数学专业考研方向:

基础数学方向:硕士毕业后,可跨考经济、金融、会计等热门专业的博士研究生;也可以在相关企业、事业单位和经济、管理部门从事统计调查、统计信息管理、数量分析和开发等工作,或在科研、教育部门成为从事研究和教学工作的高级专门人才。

概率论与数理统计方向:硕士毕业后,学生可报考基础数学学科的各专业、计算机科学、概率统计、金融学等与数学相关的或交叉的、高新技术学科的博士研究生;也可选择出国到知名大学继续深造,如哈佛大学、麻省理工大学等。

数学工程的科学与工程

数学专业考研方向有哪些

院校专业:

基本学制:四年 | 招生对象: | 学历:中专 | 专业代码:070101

培养目标

培养目标

培养目标:本专业培养掌握数学科学的基本理论与基本方法、具有运用数学知识和使用计算 机解决实际问题的能力、接受科学研究的初步训练,能在科技、教育、经济和金融等部门从事研究 和教学工作,在生产、经营及管理部门从事实际应用、开发研究和管理工作,或继续攻读研究生学 位的创新型人才。

培养要求:本专业学生主要学习数学和应用数学的基本理论、基本方法并接受数学建模、计 算机和数学软件方面的基本训练,在数学理论和应用两方面都受到良好的教育,具有较高的科学 素养和较强的创新意识,具备科学研究、教学、解决实际问题及软件开发等方面的基本能力和较 强的更新知识的能力。

毕业生应获得以下几方面的知识和能力:

1.具有比较扎实的数学基础,接受严格的科学思维训练,初步掌握数学科学的思想方法;

2.具有运用数学知识建立数学模型以解决实际问题的初步能力和进行数学教学的能力;

3.了解数学科学发展的历史概况以及当代数学的某些新发展和应用前景;

4.能熟练使用计算机(包括常用语言、工具软件及数学软件),具有编写简单程序的能力;

5.有较强的语言表达能力,掌握资料查询、文献检索以及运用现代信息技术获取相关信息 的基本方法,具有一定的科学研究能力。

6.师范类毕业生还应具有良好的教师职业素养,了解教育法规,掌握并能初步运用教育学、 心理学以及数学教育学的基本理论,具有一定的组织管理能力。

主干学科:数学。

核心知识领域:几何、分析、代数、微分方程、概率统计、数学建模、数值计算。

核心课程示例:

示例一:数学分析I-Ⅲ(288学时)、高等代数I-Ⅱ(192学时)、解析几何(80学时)、初等 数论(32学时)、近世代数基础(32学时)、常微分方程(64学时)、拓扑学(48学时)、理论力学 (48学时)、大学物理(64学时)、实变函数(64学时)、复变函数论(64学时)、数理统计(64学 时)、泛函分析(64学时)、偏微分方程(64学时)、科学计算(64学时)、随机过程(64学时)。

示例二:数学分析I-Ⅲ(378学时,含习题课)、高等代数I-Ⅱ(198学时)、解析几何(72学 时)、常微分方程(72学时)、复变函数I(72学时)、概率论与数理统计I-Ⅱ(144学时)、微分几 何(72学时)、抽象代数(72学时)、实变函数I(72学时)、泛函分析(双语)(72学时)、数学模型 与数学软件(72学时)、数值分析(72学时)、普通物理学I-Ⅱ(180学时,含实验)、计算机基础 (72学时)、C语言程序设计(108学时,含实验)。

示例三:数学分析I-Ⅲ(324学时)、高等代数I-Ⅱ(198学时)解析几何(72学时)、C语 言(90学时)、普通物理(108学时)、概率与统计(90学时)、数学软件(54学时)、数学建模(72学 时)、近世代数(54学时)、常微分方程(54学时)点集拓扑(72学时)、实变函数(72学时)、中学 数学教材教法(54学时)、微分几何(54学时)、复变函数(54学时)、初等数论(36学时)、泛函分 析(54学时)。

主要实践性教学环节:学术与科技活动、课程设计及实验、毕业实习及社会调查(实践)、毕 业论文(设计)等。

修业年限:四年。

授予学位:理学学士。

职业能力要求

职业能力要求

专业教学主要内容

专业教学主要内容

《C/C++程序设计》、《高等代数与几何》、《复变函数论》、《初等数论》、《数学分析实践》、《初等代数》、《几何分析》、《常微分方程和偏微分方程》 部分高校按以下专业方向培养:基础、财经数学、经济数学、数理金融、金融与统计、金融与保险精算、金融数学与金融工程、物流系统模型与仿真、数据科学与大数据技术。

专业(技能)方向

专业(技能)方向

教育类企业:数学教师、数学教研、教学产品研发; 金融类企业:精算师、证券分析、金融研究。

职业资格证书举例

职业资格证书举例

继续学习专业举例

就业方向

就业方向

发展前景:应用数学专业属于基础专业,是其他相关专业的“母专业”。无论是进行科研数据分析、软件开发、三维动画制作还是从事金融保险,国际经济与贸易、工商管理、化工制药、通讯工程、建筑设计等,都离不开相关的数学专业知识,数学专业与其他相关专业的联系将会更加紧密,数学专业知识将会得到更广泛的应用。由于数学与应用数学专业与其他相关专业联系紧密,以它为依托的相近专业可供选择的比较多,因而报考该专业较之其他专业回旋余地大,重新择业改行也容易得多,有利于将来更好的就业。家教业的逐渐兴起,也为数学与应用数学专业毕业生提供了一条重要的就业渠道。由于数学家教对专业知识和教学辅导艺术的要求比较高,家长不易操作或无暇顾及,于是聘请数学家教已成为许多家庭的必然选择。

对应职业(岗位)

对应职业(岗位)

其他信息:

数学专业的考研方向主要有:

1、基础数学(应用数学):数学结构本身的内在规律进行研究。

2、概率论与数理统计(概率与统计精算):概率学是研究随机事件的一门科学技术,统计学是关于收集、整理、分析和解释统计数据的科学。

3、数学工程的科学与工程计算:运用现代数学理论与方法解决各类科学与工程问题,分析和提高计算的可靠、有效、精确,研究各类数值软件的开发技术。

材料补充:

数学专业考研方向的就业:

1、基础数学:可跨考经济、金融、会计等热门专业的博士研究生,也可以在相关企业、事业单位和经济、管理部门从事统计调查、统计信息管理、数量分析和开发等工作,或在科研、教育部门成为从事研究和教学工作的高级专门人才。

2、概率论与数理统计:学生可报考基础数学学科的各专业、计算机科学、概率统计、金融学等与数学相关的或交叉的,高新技术学科的博士研究生,也可选择出国到知名大学继续深造。

3、数学工程的科学与工程计算系:可从事程序开发工作,薪水一般较高,但工作强度也相对较大。另外,这个专业的毕业生还可到各大高校从事教学工作,既可以进一步开展研究,也为培养专业人才作出了贡献。

数学考研有哪些方向

1、基础数学

基础数学又叫纯粹数学,即按照数学内部的需要,或未来可能的应用,对数学结构本身的内在规律进行研究,而并不要求同解决其他学科的实际问题有直接的联系,只是以纯粹形式研究事物的数量关系和空间形式。

基础数学是数学科学的核心。它不仅是其它应用性数学分支的基础,而且也为自然科学、技术科学及社会科学提供必不可少的语言、工具和方法。微分几何、数学物理、偏微分方程等都属于基础数学范畴。人们耳熟能详的陈景润证明“1+2”哥德巴赫猜想的故事就发生在这个领域。

2、计算数学

计算数学是伴随着计算机的出现而迅猛发展起来的新学科,涉及计算物理、计算化学、计算力学、计算材料学、环境科学、地球科学、金融保险等众多交叉学科。它运用现代数学理论与方法解决各类科学与工程问题,分析和提高计算的可靠性、有效性和精确性,研究各类数值软件的开发技术。

既突出了解决信息、电子与计算机领域中的某些核心理论技术问题,又注意到从这些高新技术中抽象出新的数学理论;在保持应用数学与计算数学主体研究方向优势的基础上,重视并加强信息科学的数学基础、数据分析与统计计算、科学计算、现代优化、电子系统的数值模拟、生物系统的数学建模等研究。

专业背景:要求考生具备基础数学、应用数学、信息技术、计算机科学、数据处理和系统分析,工程学、以及数字图像等学科知识。

研究方向:工程问题数值方法、发展方程与动力系统的数值方法、数值逼近与数字图像处理、计算机图形学与计算机软件、光学与电磁学中的数学问题等。

站在数学的肩膀上,这个方向的同学考博或出国占极大优势。研究生毕业如果从事程序开发工作,薪水一般较高,但工作强度也相对较大。

另外,这个专业的毕业生还可到各大高校从事教学工作,既可以进一步开展研究,也为培养专业人才作贡献。

3、概率和统计

作为数学的分支,概率学是研究随机事件的一门科学技术,涉及工程、生物学、化学、遗传学、博弈论、经济学等多方面的应用,几乎遍及所有的科学技术领域,可以说是各种预测的基石。

统计学是关于收集、整理、分析和解释统计数据的科学,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策提供依据和参考。

概率论与数理统计是本世纪迅速发展的学科,研究各种随机现象的本质与内在规律性以及自然科学、社会科学等各个学科中各种类型数据的科学的综合处理及统计推断方法。随着人类社会各种体系的日益庞大、复杂、精密,计算机的广泛使用,概率统计的重要性将越来越大。

4、应用数学

应用数学包括两个部分,一部分就是与应用有关的数学,另外一部分是数学的应用,即以数学为工具,探讨解决科学、工程学和社会学方面的问题。应用数学主要是应用于两个领域,一是计算机,随着计算机的飞速发展,需要一大批懂数学的软件工程师做相应的数据库的开发;

二是经济学,现在的经济学有很多都需要用非常专业的数学进行分析,应用数学有很多相关课程本身设计就是以经济学实例为基础的。

应用数学与纯数学最大的区别就是与实际的结合:设法解决自然现象与社会发展提出的数学问题,并将其探讨结果应用回到自然界与社会中去。

无论是进行科研数据分析、软件开发、三维动画制作,还是从事金融保险、国际经济与贸易、工商管理、化工制药、通讯工程、建筑设计等,都离不开相关的数学专业知识。

该专业毕业生的就业去向也大多集中在与信息产业相关的各大集团公司、科研设计单位、金融机构等,并且在出国或深造上也有很大的优势。据相关人士介绍,如果本科学应用数学,报考硕士时选择发展方向时就有很大优势,尤其是金融与经济比本专业毕业生有大的优势,也能向更高层次发展。

扩展资料

历史

数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),有学习、学问、科学之意。

古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦被用来指数学。

其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká)。

在中国古代,数学叫作算术,又称算学,最后才改为数学。中国古代的算术是六艺之一(六艺中称为“数”)。

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.

代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。

直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程。而其后更发展出更加精微的微积分。

现时数学已包括多个分支,创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。

他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……)。

数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等,数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展,数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标,虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用,

具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学)。

就纵度而言,在数学各自领域上的探索亦越发深入。

-数学

-数学专业