以下是菱形的判定定理:
1、在一个平面内,有一组邻边相等的平行四边形是菱形;
2、四条边相等的四边形是菱形;
3、对角线互相垂直的平行四边形是菱形,对角线互相垂直且平分的四边形是菱形;
4、一组邻边相等的平行四边形是菱形;
5、对角线平分一组对角的平行四边形是菱形。
菱形的判定定理
菱形是特殊的平行四边形,符合平行四边形的所有特征,它的判定也是在平行四边形的基础上进行的。
菱形判定定理
1、四条边都相等的四边形是菱形
2、对角线互相垂直的平行四边形是菱形
3、一组邻边相等的平行四边形是菱形
4、对角线平分对应内角的平行四边形是菱形
菱形性质1、菱形具有平行四边形的一切性质
2、菱形的四条边都相等
3、菱形的对角线互相垂直平分且平分每一组对角
4、菱形是轴对称图形,对称轴有2条,即两条对角线所在直线
5、菱形是中心对称图形
菱形的判定方法
菱形的判定定理
1、四条边相等的四边形是菱形。
证明:
∵AB=CD,BC=AD,
∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).
又∵AB=BC,
∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).
2、对角线互相垂直的平行四边形是菱形。
证明:
∵ 四边形ABCD是平行四边形,
∴ OA=OC(平行四边形的对角线相互平分)。
又∵AC⊥BD,
∴ BD所在直线是线段AC的垂直平分线,
∴ AB=BC,
∴ 四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形)。
3、有一组邻边相等的平行四边形是菱形。
RF是三角形ABD的中位线,于是RF∥AD,
同理:GH∥AD,RH∥BE,FG∥BE,所以有RF∥GH,RH∥FG,
所以四边形RFGH是平行四边形;
第二步证明△ACD≌△BCE,则AD=BE,于是有RH=RF;所以四边形RFGH是菱形。
扩展资料
菱形定理的运用:
已知:如图,在◇ABCD中,对角线AC的垂直平分线分别与AD、AC、BC分别交于点E、O、F。则四边形AFCE是菱形。
证明:
∵ 四边形ABCD是平行四边形,
∴ AE∥FC(平行四边形的对边平行),
∴ ∠EAO=∠FCO.
∵ EF平分AC,
∴ AO=OC.
又∵ ∠AOE=∠COF=90°,
∴ △AOE≌△COF(ASA),
∴ EO=FO,
∴ 四边形AFCE是平行四边形(对角线互相平分的四边形是平行四边形)。
又∵EF⊥AC,
∴ 四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形)。
参考资料来源:百度百科-菱形
菱形的判定
菱形的判定定理如下举例:
总的来说有三种:
1、四条边都相等的四边形
2、对角线相互垂直的平行四边形
3、有一组邻边相等的平行四边形
下面具体证明一下:
1、四条边相等的四边形是菱形。
证明:
∵AB=CD,BC=AD,
∴四边形ABCD是平dao行四边形(两组对边分别相等的四边形是平行四边形).
又∵AB=BC,
∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).
2、对角线互相垂直的平行四边形是菱形。
证明:
∵ 四边形ABCD是平行四边形,
∴ OA=OC(平行四边形的对角线相互平分)。
又∵AC⊥BD,
∴ BD所在直线是线段AC的垂直平分线,
∴ AB=BC,
∴ 四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形)。
3、有一组邻边相等的平行四边形是菱形。
RF是三角形ABD的中位线,于是RF∥AD,
同理:GH∥AD,RH∥BE,FG∥BE,所以有RF∥GH,RH∥FG,
所以四边形RFGH是平行四边形;
第二步证明△ACD≌△BCE,则AD=BE,于是有RH=RF;所以四边形RFGH是菱形。
扩展资料:
在同一平面内,
1、一组邻边相等的平行四边形是菱形;
2、对角线互相垂直的平行四边形是菱形;
3、四条边均相等的四边形是菱形;
4、对角线互相垂直平分的四边形;
5、两条对角线分别平分每组对角的四边形;
6、有一对角线平分一个内角的平行四边形;
菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。
菱形的一条对角线必须与x轴平行,另一条对角线与y轴平行。不满足此条件的几何学菱形在计算机图形学上被视作一般四边形。
菱形判定定理
菱形判定定理(Determination of rhombus),数学定理,适用于数学几何、实际应用。
① 四条边都相等的四边形是菱形。
② 对角线互相垂直平分的平行四边形是菱形。
③ 一组邻边相等的平行四边形是菱形。
④ 对角线平分一组对角的平行四边形是菱形。注意:一组对角线平分一组对角的四边形不是菱形,也可能是筝形(有一条对角线所在直线为对称轴的四边形)
菱形的判定
1.有一组邻边相等的平行四边形是菱形。(菱形的定义)
2.四条边都相等的四边形是菱形。
3. 对角线互相垂直平分的平行四边形是菱形。