标准差能反映一个数据集的离散程度。标准差,是离均差平方的算术平均数的平方根,用σ表示。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。

标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。

标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越细,代表回报较为稳定,风险亦较小。

在真实世界中,除非在某些特殊情况下,不然找到一个总体的真实的标准差是不现实的。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。


标准差算出来有什么作用吗

标准差能反映一个数据集的离散程度。

两个班的学生分数,标准差小的说明全班同学的分数和平均分数的距离比较小,标准差大的说明全班同学的成绩和平均分数差的比较大。

标砖差的计算方法是:所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。

标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。

扩展资料

标准差能很客观准确的反映一组数据的离散程度,但是对于不同的项目,或同一项目不同的样本,标准差就缺乏可比性了,因此对于方法学评价来说又引入了变异系数CV。

一组数据的平均值及标准差常常同时做为参考的依据。在直觉上,如果数值的中心以平均值来考虑,则标准差为统计分布之一“自然”的测量。

标准差与标准误都是数理统计学的内容,两者不但在字面上比较相近,而且两者都是表示距离某一个标准值或中间值的离散程度,即都表示变异程度,但是两者是有着较大的区别的。

-标准差

标准差公式是什么?

标准差公式是一种数学公式。标准差也被称为标准偏差,或者实验标准差,公式如下所示:

标准差计算公式:标准差σ=方差开平方。

样本标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/(n-1))。

总体标准差=σ=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n )。

注解:上述两个标准差公式里的x为一组数(n个数据)的算术平均值。当所有数(个数为n)概率性地出现时(对应的n个概率数值和为1),则x为该组数的数学期望。

标准差是什么?


标准差,中文环境中又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。

标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同;原因是它的大小,不仅取决于标准值的离差程度,还决定于数列平均水平的高低。

以上便是排行榜大全网整理的标准差反映了什么的全部内容,关注我们获取更多资讯信息。