单位向量是指模等于1的向量。由于是非零向量,单位向量具有确定的方向。单位向量有无数个。一个非零向量除以它的模,可得所需单位向量。一个单位向量的平面直角坐标系上的坐标表示可以是:(n,k) ,则有n²+k²=1。

在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。

向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。

在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。

几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。


向量的单位向量怎么求

单位向量就是指模长等于1的向量
那么对于任何非零向量来说
只要用向量坐标除以其模长
得到的就是其对应的单位向量
即如果向量(a1,a2,…,an)的模长
是L=√(a1?+a2?+…+an?)
其单位向量就是(a1/L,a2/L,…,an/L)

单位向量怎么求

第一步,先算出向量的模长 如(3,-4)的模长为根号(9+16)=5 (4,-3)的模长为根号(16+9)=5 第二步,将向量除以它的模后,所得的向量就是它的单位向量 如(3,-4)的单位向量为(3/5,-4/5) (4,-3)的单位向量为(4/5,-3/5) 注意:单位向量的模长必为1

以上便是排行榜大全网整理的单位向量是多少的全部内容,关注我们获取更多资讯信息。