静息电位指安静时存在于细胞两侧的外正内负的电位差。
其产生有两个重要条件,一是膜两侧离子的不平衡分布,二是静息时膜对离子通透性的不同。
细胞静息期主要的离子流为钾离子外流,钾离子外流导致正电荷向外转移,其结果导致细胞内的正电荷减少而细胞外正电荷增多,从而形成细胞膜外侧电位高而细胞膜内侧电位低的电位差,即是静息电位。
动作电位是指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程,形成条件是细胞膜两侧离子浓度差。
简述静息电位产生机制
细胞内K浓度和带负电的蛋白质浓度都大于细胞外(细胞外Na和Cl浓度均高于细胞内),但由于细胞膜只对K有相对较高的通透性,故细胞内k浓度和带负电的蛋白质浓度均高于细胞外。K顺浓度差从细胞向胞外移动,而膜内带负电荷的蛋白质离子不能穿透细胞,阻碍了K外移。
因此,k离子迁移导致膜内为负,膜外为正。一方面,k的正、负态随k的移动而增加,另一方面,k的正、负态阻碍k的移动。最后,k移动的相平衡状态(由于浓度差)和k移动的阻碍(由于电位差异)已实现。
膜电位称为k平衡电位。其数值EK受该离子膜内外浓度比决定,可通过Nernst公式进行计算:
其中R是通用气体常数,T是绝对温度,Z是离子价,F是Faraday常数,[K]o和[K]i分别代表膜外和膜内K的浓度。同样,钠的平衡势也可以用这个公式计算。在模式生物枪乌贼神经细胞膜两侧,K的平衡电位约为—75mV,Na的平衡电位约为+55mV。
扩展资料:
静息电位产生机制的极化状态:
细胞膜两侧的电位差在某些情况下会发生变动,使细胞膜处于不同的电位状态。当细胞处于静默状态时,膜两侧的正负态称为膜的极化态。当膜电位沿膜内负值增大的方向变化时,称为超极化;反之,膜电位沿膜内负值减小的方向变化称为去极化。
当膜电位沿膜内负值增大的方向变化时,称为去极化。去极化进一步加剧,膜内电位变为正值,而膜外电位变为负值,则称为反极化;细胞受到刺激后先发生反极化,再向膜内为负的静息电位水平恢复,称为膜的复极化。
参考资料来源:百度百科-静息电位
参考资料来源:百度百科-静息电位产生机制
简述静息电位的形成原理
静息电位产生原理
细胞的静息电位相当于K+平衡电位,系因K+跨膜扩散达电化学平衡所引起。正常时细胞内的K+浓度高于细胞外,而细胞外Na+浓度高于细胞内。在安静状态下,虽然细胞膜对各种离子的通透性都很小,但相比之下,对K+有较高的通透性,于是细胞内的K+在浓度差的驱使下,由细胞内向细胞外扩散。由于膜内带负电荷的蛋白质大分子不能随之移出细胞,所以随着带正电荷的K+外流将使膜内电位变负而膜外变正。但是,K+的外流并不能无限制地进行下去。
因为最先流出膜外的K+所产生的外正内负的电场力,将阻碍K+的继续外流,随着K+外流的增加,这种阻止K+外流的力量(膜两侧的电位差)也不断加大。当促使K+外流的浓度差和阻止K+外移的电位差这两种力量达到平衡时,膜对K+的净通量为零,于是不再有K+的跨膜净移动,而此时膜两侧的电位差也就稳定于某一数值不变,此电位差称为K+平衡电位。除K+平衡电位外,静息时细胞膜对Na+也有极小的通透性,由于Na+顺浓度差内流,因而可部分抵消由K+外流所形成的膜内负电位。
动作电位产生原理
当细胞受到刺激产生兴奋时,首先是少量兴奋性较高的钠通道开放,很少量钠离子顺浓度差进入细胞,致使膜两侧的电位差减小,产生一定程度的去极化。当膜电位减小到一定数值(阈电位)时,就会引起细胞膜上大量的钠通道同时开放,此时在膜两侧钠离子浓度差和电位差(内负外正)的作用下,使细胞外的钠离子快速、大量地内流,导致细胞内正电荷迅速增加,电位急剧上升,形成了动作电位的上升支,即去极化。
当膜内侧的正电位增大到足以阻止钠离子的进一步内流时,也就是钠离子的平衡电位时,钠离子停止内流,并且钠通道失活关闭。在钠离子内流过程中,钾通道被激活而开放,钾离子顺着浓度梯度从细胞内流向细胞外,当钠离子内流速度和钾离子外流速度平衡时,产生峰值电位。随后,钾离子外流速度大于钠离子内流速度,大量的阳离子外流导致细胞膜内电位迅速下降,形成了动作电位的下降支,即复极化。此时细胞膜电位虽然基本恢复到静息电位的水平,但是由去极化流入的钠离子和复极化流出钾离子并未各自复位,此时,通过钠钾泵的活动将流入的钠离子泵出并将流出的钾离子泵入,恢复动作电位之前细胞膜两侧这两种离子的不均衡分布,为下一次兴奋做好准备。
参考资料:
简述细胞静息电位和动作电位的形成机制
静息电位:组织细胞安静状态下存在于膜两侧的电位差,称为静息电位,或称为膜电位。细胞在安静状态时,正电荷位于膜外一侧(膜外电位为正),负电荷位于膜内一侧(膜内电位为负,)这种状态称为极化。如果膜内外电位差增大,即静息电位的数值向膜内负值加大的方向变化时,称为超极化。相反地,如果膜内外电位差减小,即膜内电位向负值减小的方向变化,则称为去极化或极化。一般神经纤维的静息电位如以膜外电位为零,膜内电位为-70~-90mv。
静息电位是指细胞在安静时,存在于膜内外的电位差。 生物电产生的原理可用“离子学说”解释。
心室肌细胞安静时,细胞膜处于外正内负的极化状态。静息电位约-90毫伏。心室肌细胞静息电位产生的原理基本上和神经纤维相同,主要是由于安静时细胞内高浓度的K+向膜外扩散而造成。
其动作电位与神经纤维相比较有很大差别,表现为复极化过程有明显特征。通常将全过程分为0、1、2、3、4期。(1)去极化过程(0期):去极化过程形成动作电位的上升支(0期),其形成机制亦与神经纤维相同。此期电位变化幅度约120mV,持续时间1~2ms。(2)复极化过程:该过程形成动作电位下降支,分为四期。1期(快速复极初期):心室肌细胞去极达顶峰后立即开始复极,膜内电位迅速下降到0mV左右,形成1期,占时约10ms。K+外流是1期快速复极的主要原因。2期(缓慢复极期):此期复极非常缓慢,膜内电位下降速度极慢,停滞在0mV左右,形成平台状,故2期又称平台期,历时约100~150ms。该期是心室肌细胞动作电位区别于神经纤维和骨骼肌的主要特征,也是动作电位持续时间较长,有效不应期特别长的原因。形成的机制是本期内有Ca2+内流和K+外流同时存在,缓慢持久的Ca2+内流抵消了K+外流,致使膜电位保持在0mV附近。3期(快速复极末期):此期膜内电位迅速下降到静息电位水平(-90mV),形成3期,以完成复极化过程,历时约100~150ms。K+快速外流是3期快速复极的原因。4期(静息期):此期膜电位虽已恢复到静息电位水平,但在动作电位形成过程中,膜内Na+、Ca2+增多,膜外K+增多,致使膜内外的这几种离子浓度有所改变。本期内,细胞膜离子泵积极地进行着逆浓度梯度转运,把Na+和Ca2+排到细胞外,同时将K+摄回细胞内,以恢复细胞内外离子的正常浓度,保持心肌细胞的正常兴奋能力。
心肌兴奋后的有效不应期特别长,一直延长到心肌机械收缩的舒张开始以后。也就是说,在整个心脏收缩期内,任何强度的刺激都不能使心肌产生扩布性兴奋。心肌的这一特性具有重要意义,它使心肌在自律性兴奋来临时,不能产生象骨骼肌那样的强直收缩,从而始终保持着收缩与舒张交替的节律性活动,这样心脏的充盈和射血才可能进行。
静息电位的形成机理
膜电位细胞生命活动过程中伴随的电现象,存在于细胞膜两侧的电位差称膜电位(membrane potential) 通常是指以膜相隔的两溶液之间产生的电位差生物细胞被以半透性细胞膜,而膜两边呈现的生物电位就是这种电位,平常把细胞内外的电位差叫膜电位如果把两种电解质用膜隔开,使一侧含有不能透过该膜的粒子,由于这种影响,两侧电解质的分布便发生了变化,一旦董南(donnan)膜平衡建立膜两侧就会有董南膜电位如果两侧没有这种不透性离子,但只要把浓度不同的两种电解质以膜隔开,在阳离子和阴离子透过膜的速度不同时,膜两侧也会产生电位差在膜两侧放01和001N的KCl溶液时产生的膜电位,作为表现膜特性的电位,则称为标准电位差,其值最大可达58mV膜电位的存在和各种影响引起的这些变化是静止电位和动作电位的成因
动作电位(1)概念:可兴奋组织或细胞受到阈上刺激时,在静息电位基础上发生的快速、可逆转、可传播的细胞膜两侧的电变化动作电位的主要成份是峰电位
(2)形成条件:
①细胞膜两侧存在离子浓度差,细胞膜内K+浓度高于细胞膜外,而细胞外Na+、Ca2+、Cl-高于细胞内,这种浓度差的维持依靠离子泵的主动转运(主要是Na+ -K+泵的转运)
②细胞膜在不同状态下对不同离子的通透性不同,例如,安静时主要允许K+通透,而去极化到阈电位水平时又主要允许Na+通透
③可兴奋组织或细胞受阈上刺激
(3)形成过程:≥阈刺激→细胞部分去极化→Na+少量内流→去极化至阈电位水平→Na+内流与去极化形成正反馈(Na+爆发性内流)→达到Na+平衡电位(膜内为正膜外为负)→形成动作电位上升支
膜去极化达一定电位水平→Na+内流停止、K+迅速外流→形成动作电位下降支
(4)形成机制:动作电位上升支——Na+内流所致
动作电位的幅度决定于细胞内外的Na+浓度差,细胞外液Na+浓度降低动作电位幅度也相应降低,而阻断Na+通道(河豚毒)则能阻碍动作电位的产生
动作电位下降支——K+外流所致
动作电位时细胞受到刺激时细胞膜产生的一次可逆的、可传导的电位变化产生的机制为①阈刺激或阈上刺激使膜对Na+的通透性增加,Na+顺浓度梯度及电位差内流,使膜去极化,形成动作电位的上升支②Na+通道失活,而 K+通道开放,K+外流,复极化形成动作电位的下降支③钠泵的作用,将进入膜内的Na+泵出膜外,同时将膜外多余的 K+泵入膜内,恢复兴奋前是离子分布的浓度
简述静息电位和动作电位产生的基本原理
细胞静息时在膜两侧存在电位差的原因:①细胞膜两侧各种钠、钾离子浓度分布不均;②在不同状态下,细胞膜对各种离子的通透性不同。
枪乌贼轴突膜内外主要离子分布: 离子 细胞内液(mmol/L) 细胞外液(mmol/L) 能斯特电位(mV) 钾离子 400 20 -75 钠离子 50 440 +55 氯离子 52 560 -60 有机阴离子 385 - - 细胞膜两侧的离子呈不均衡分布,膜内的钾离子高于膜外,膜内的钠离子和氯离子低于膜外,即胞内为高钾、低钠、低氯的环境。此外,有机阴离子仅存在于细胞内。在安静状态下,细胞膜对钾离子通透性大,对钠离子通透性很小,仅为钾离子通透性的1/100~1/50,而对氯离子则几乎没有通透性。因此,细胞静息期主要的离子流为钾离子外流。钾离子外流导致正电荷向外转移,其结果导致细胞内的正电荷减少而细胞外正电荷增多,从而形成细胞膜外侧电位高而细胞膜内侧电位低的电位差。可见,钾离子外流是静息电位形成的基础,推动钾离子外流的动力是膜内外钾离子浓度差。
钾离子外流并不能无限制地进行下去,因为随着钾离子顺浓度差外流,它所形成的内负外正的电场力会阻止带正电荷的钾离子继续外流。当浓度差形成的促使钾离子外流的力与阻止钾离子外流的电场力达到平衡时,钾离子的净移动就会等于零。此时,细胞膜两侧稳定的电位差称为钾离子的电位。
根据物理化学能斯特公式,只要知道细胞膜两侧钾离子的浓度差,就可计算出钾离子的平衡电位。如果人工改变细胞膜外钾离子的浓度,当浓度增高时测得的静息电位值减小,当浓度降低时测得的静息电位值增大,其变化与根据能斯特公式计算所得的预期值基本一致。科学家注意到根据公式计算出钾离子平衡电位还是与实际测量出的静息电位有很小的一些差别的,测定值总是比计算值负得少。这是由于膜对钠离子和氯离子也有很小的通透性,它们的经膜扩散(主要指钠离子的内移),可以抵销一部分由钾离子外移造成的电位差数值。
静息状态下钾离子的外流是构成静息电位的主要因素。一般细胞内钾离子的浓度变化非常小,因此造成细胞内外钾离子浓度差变动的主要因素是细胞外的钾离子浓度。如果细胞外钾离子浓度增高,可使细胞内外的钾离子浓度差减小,从而使钾离子向外扩散的动力减弱,钾离子外流减少,结果是静息电位减小。反之,则使静息电位增高。这个实验也进一步说明,形成静息电位的主要离子就是钾离子。 这里的离子流动属于协助扩散,不消耗能量。
静息电位产生原理是细胞静息时在膜两侧存在电位差。
动作电位的产生原理是细胞外钠离子的浓度比细胞内高的多,它有从细胞外向细胞内扩散
的趋势。
1、静息电位
静息电位(Resting Potential,RP)是指细胞未受刺激时,存在于细胞膜内外两侧的外正内
负的电位差。它是一切生物电产生和变化的基础。当一对测量微电极都处于膜外时,电极间
没有电位差。在一个微电极尖端刺入膜内的一瞬间,示波器上会显示出突然的电位改变,这
表明两个电极间存在电位差,即细胞膜两侧存在电位差,膜内的电位较膜外低。该电位在安
静状态始终保持不变,因此称为静息电位。几乎所有的动植物细胞的静息电位膜内均较膜外
低,若规定膜外电位为零,则膜内电位即为负值。大多数细胞的静息电位在-10~-100mV之
间。
2、动作电位
动作电位是指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。动
作电位由峰电位(迅速去极化上升支和迅速复极化下降支的总称)和后电位(缓慢的电位变
化,包括负后电位和正后电位)组成。峰电位是动作电位的主要组成成分,因此通常意义的
动作电位主要指峰电位。动作电位的幅度约为90~130mV,动作电位超过零电位水平约
35mV,这一段称为超射。神经纤维的动作电位一般历时约05~20ms,可沿膜传播,又称
神经冲动,即兴奋和神经冲动是动作电位意义相同。
3、形成条件
①细胞膜两侧存在离子浓度差,细胞膜内钾离子浓度高于细胞膜外,而细胞外钠离子、钙
离子、氯离子高于细胞内,这种浓度差的维持依靠离子泵的主动转运。(主要是钠-钾泵
(每3个Na+流出细胞, 就有2个K+流入细胞内。即:Na+:K+ =3:2)的转运)。
②细胞膜在不同状态下对不同离子的通透性不同,例如,安静时主要允许钾离子通透,而去极
化到阈电位水平时又主要允许钠离子通透。
③可兴奋组织或细胞受阈刺激或阈上刺激。