世界有七大数学难题,目前已经解决庞加莱猜想和黎曼假设,其余难题如下:

1、NP完全问题:是不确定性图灵机在P时间内能解决的问题,是NP类中“最难”的问题,即它们是最可能不属于P类的,这是因为任何NP中的问题可以在多项式时间内变换成为任何特定NP完全问题的一个特例;

2、霍奇猜想:是代数几何的一个重大的悬而未决的问题,它是关于非奇异复代数簇的代数拓扑和它由定义子簇的多项式方程所表述的几何的关联的猜想;

3、杨·米尔斯理论:是现代规范场理论的基础,为研究强子的结构提供

数学趣闻和数学未解之谜有哪些?

这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。

韩信点兵

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?

首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」

答曰:「二十三」

术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。」

数学之美不但体现在漂亮的结论和精妙的证明上,那些尚未解决的数学问题也有让人神魂颠倒的魅力。和 Goldbach 猜想、 Riemann 假设不同,有些悬而未解的问题趣味性很强,"数学性"非常弱,乍看上去并没有触及深刻的数学理论,似乎是一道可以被瞬间秒杀的数学趣题,让数学爱好者们"不找到一个巧解就不爽";但令人称奇的是,它们的困难程度却不亚于那些著名的数学猜想,这或许比各个领域中艰深的数学难题更折磨人吧。

这篇文章很长,大家不妨用自己喜欢的方式马克一下,一天读一点。

天使和恶魔

天使和恶魔在一个无限大的棋盘上玩游戏。每一次,恶魔可以挖掉棋盘上的任意一个格子,天使则可以在棋盘上飞行 1000 步之后落地;如果天使落在了一个被挖掉的格子上,天使就输了。

问题:恶魔能否困住天使(在天使周围挖一圈厚度 1000 的坑)?

这是 Conway 大牛的又一个经典谜题。经常阅读这个 Blog 的人会发现, Conway 大牛的出镜率极高。不过这一次,Conway 真的是伤透了不少数学家的脑筋。作为一个很"正常"的组合游戏,天使与恶魔的问题竟然一直没能得到解决。目前已经有的结论是,如果天使每次只能移动一步,恶魔一定能获胜。不过,天使只要能每次飞两步,似乎就已经很无敌了。当然,魔鬼的优势也不小——它不用担心自己"走错",每多挖一个坑对于它来说都是有利的。

话说回来, Conway 本人似乎仍然相信天使能赢——他悬赏了 1000 美元征求恶魔必胜的证明,但只悬赏了 100 美元征求天使必胜的证明。

3x + 1 问题

从任意一个正整数开始,重复对其进行下面的操作:如果这个数是偶数,把它除以 2 ;如果这个数是奇数,则把它扩大到原来的 3 倍后再加 1 。序列是否最终总会变成 4, 2, 1, 4, 2, 1, … 的循环?

这个问题可以说是一个"坑"——乍看之下,问题非常简单,突破口很多,于是数学家们纷纷往里面跳;殊不知进去容易出去难,不少数学家到死都没把这个问题搞出来。已经中招的数学家不计其数,这可以从 3x + 1 问题的各种别名看出来: 3x + 1 问题又叫 Collatz 猜想、 Syracuse 问题、 Kakutani 问题、 Hasse 算法、 Ulam 问题等等。后来,由于命名争议太大,干脆让谁都不沾光,直接叫做 3x + 1 问题算了。

3x + 1 问题不是一般的困难。这里举一个例子来说明数列收敛有多么没规律。从 26 开始算起, 10 步就掉入了"421 陷阱":

26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, …

但是,从 27 开始算起,数字会一路飙升到几千多,你很可能会一度认为它脱离了"421 陷阱";但是,经过上百步运算后,它还是跌了回来:

27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, …

随机 01 串的最长公共子序列

如果从数字序列 A 中删除一些数字就能得到数字序列 B ,我们就说 B 是 A 的子序列。例如, 110 是 010010 的子序列,但不是 001011 的子序列。两个序列的"公共子序列"有很多,其中最长的那个就叫做"最长公共子序列"。

随机产生两个长度为 n 的 01 序列,其中数字 1 出现的概率是 p ,数字 0 出现的概率是 1 - p 。用 Cp(n) 来表示它们的最长公共子序列的长度,用 Cp 来表示 Cp(n) / n 的极限值。

关于 Cp 的存在性,有一个非常巧妙的证明;然而,这个证明仅仅说明了 Cp 的存在性,它完全没有给计算 Cp 带来任何有用的提示。

即使是 C1/2 的值,也没人能成功算出来。 Michael Steele 猜想 C1/2 = 2/(1 + √2) ≈ 0828427 。后来, V Chvátal 和 D sankoff 证明了 0773911 < C1/2 < 0837623 ,看上去 Michael Steele 的猜想似乎很可能是对的。 2003 年, George Lueker 证明了 07880 < C1/2 < 08263 ,推翻了 Michael Steele 的猜想。

更糟的是,"当 p 为 1/2 时 Cp 达到最小"似乎是一件很靠谱的事,但这个结论也无人能证明。

曲线的内接正方形

证明或推翻,在平面中的任意一条简单封闭曲线上,总能找到四个点,它们恰能组成一个正方形。

任意凸多边形上总存在四个可以构成正方形的点;对证明方法进行改进,可以把结论扩展到凹多边形上。目前,对于充分光滑的曲线,似乎已经有了肯定的结论;但对于任意曲线来说,这仍然是一个悬而未解的问题。平面上的曲线无奇不有,说不准我们真能精心构造出一种不满足要求的怪异曲线。

环形跑道难题

有一个环形跑道,总长为 1 个单位。n 个人从跑道上的同一位置出发,沿着跑道顺时针一直跑下去。每个人的速度都是固定的,但不同人的速度不同。证明或推翻,对于每一个人,总会有一个时刻,他与其他所有人的距离都大于 1/n 。

乍看上去,这个问题无异于其它各种非常巧妙的初等组合数学问题,但不可思议的是,这个问题竟然直到现在仍没解决。目前最好的结果是,当 n ≤ 6 时,结论是成立的。直觉上,对于更大的 n ,结论也应该成立,不过尚未有人证明。

排序问题加强版

有 n 个盒子,从左至右依次编号为 1, 2, …, n 。第 1 个盒子里放两个编号为 n 的小球,第 2 个盒子里放两个编号为 n - 1的小球,以此类推,第 n 个盒子里放两个编号为 1 的小球。每一次,你可以在相邻两个盒子中各取一个小球,交换它们的位置。为了把所有小球放进正确的盒子里,最少需要几次交换?

为了说明这个问题背后的陷阱,我们不妨先拿 n = 5 的情况做个例子。首先,如果每个盒子里只有一个球,问题就变成了经典的排序问题了:只能交换相邻元素,如何最快地把 5, 4, 3, 2, 1 变成 1, 2, 3, 4, 5 ?如果一个数列中前面的某个数反而比后面的某个数大,我们就说这两个数是一个"逆序对"。显然,初始情况下所有数对都是逆序对,n = 5 时逆序对共有 10 个。我们的目的就是要把这个数目减少到 0 。而交换两个相邻的数只能消除一个逆序对,因此 10 次交换是必需的。

不过,题目里面每个盒子里有两个球,那么是不是必须要交换 20 次才行呢?错!下面这种做法可以奇迹版地在 15 步之内完成排序:

55, 44, 33, 22, 11

54, 54, 33, 22, 11

54, 43, 53, 22, 11

54, 43, 32, 52, 11

54, 43, 32, 21, 51

54, 43, 21, 32, 51

54, 31, 42, 32, 51

41, 53, 42, 32, 51

41, 32, 54, 32, 51

41, 32, 42, 53, 51

41, 32, 42, 31, 55

41, 32, 21, 43, 55

41, 21, 32, 43, 55

11, 42, 32, 43, 55

11, 22, 43, 43, 55

11, 22, 33, 44, 55

第一次看上去似乎很不可思议,但细想一下还是能想明白的:同一个盒子里能够放两个数,确实多了很多新的可能。如果左边盒子里的某个数比右边某个盒子里的数大,我们就说这两个数构成一个逆序对;但如果两个不同的数在同一个盒子里,我们就把它们视作半个逆序对。现在让我们来看看,一次交换最多能消除多少个逆序对。假设某一步交换把 ab, cd 变成了 ac, bd ,最好的情况就是 bc 这个逆序对彻底消除了,同时 ac 、 bd 两个逆序对消除了一半, ab 、 cd 两个(已经消除了一半的)逆序对也消除了一半,因此一次交换最多可以消除 3 个逆序对。由于一开始每个盒子里的两个相同的数都会在中间的某个时刻分开来,最后又会合并在一起,因此我们可以把初始时两个相同的数也当作一个逆序对。这样的话,初始时每两个数都是逆序对, n 个盒子里将产生 C(2n, 2)个逆序对。自然,我们至少需要 C(2n, 2) / 3 步才能完成排序。当 n = 5 时, C(2n, 2) / 3 = 15 ,这就说明了上面给出的 n = 5 的排序方案是最优的。

这个分析太巧妙了,实在是让人拍案叫绝。就只可惜,这个下界并不是总能达到的。当 n = 6 时,上述分析得出的下界是 22 步,但计算机穷举发现没有 23 步交换是不行的。于是,这个问题又变成了一个诱人的坑,至今仍未被填上。

多面体的展开

证明或推翻,总可以把一个凸多面体沿着棱剪开,展开成一个简单的平面多边形。

这是一个看上去很"自然"的问题,或许大家在玩弄各种纸制包装盒的时候,就已经思考过这个问题了。现在,人们已经找到了不满足条件的凹多面体,也就是说存在凹多面体使得无论怎样展开它都会不可避免地得到与自身重叠的平面多边形。同时,确实也存在一些凸多面体,按照某种方式展开它后,会得到与自身重叠的平面多边形。不过,对于某个凸多面体,任何一种方法都不能把它展开到一个平面上,这听上去似乎不大可能;然而,在数学上这一点却一直没被证明。

用平面镜拼成的多边形

证明或推翻,对于任意一个内壁全是镜面的多边形,总能在里面找到一个点,使得位于这个点的光源可以照亮整个多边形内部。

这是一个非常有创意的问题,只可惜问题最早的出处已经不得而之了。问题有趣就有趣在,"多边形"这个条件是必需的:如果允许有曲线的话,我们就能构造出一个由镜面构成的平面图形(左图),里面的每个点都不能照亮整个图形。

对于多边形的情况, 1995 年 Tokarsky 给出了一个 26 边形房间(右图),把光源放在其中一个点上,它将无法照到另一个点(假设顶点处不反射光线)。因此,问题就只剩下一个了:有没有什么多边形,任意位置的光源都无法照亮整个图形?

Thrackle 猜想

如果一个图中,每条边都与其它所有边相交恰好一次(顶点处相接也算相交),这个图就叫做一个 thrackle 。问,是否存在边数大于顶点数的 thrackle 图?

给你一次机会,让你猜猜这个猜想是谁提出来的!没错,又是 John Conway 。这明显又是一个坑,看到这个问题谁都想试试,然后就纷纷崩溃掉。 Conway 悬赏 1000 美元征解,可见这个问题有多么不容易。目前已知的最好的结果是,一个 thrackle 的边数不会超过顶点数的两倍减 3 。

遍历所有的"中间子集"

证明或推翻,你可以通过每次添加或者删除一个元素,遍历集合 {1, 2, …, 2n + 1} 的所有大小为 n 或 n + 1 的子集。

看完上面的这一行字,我可以想象你已经有一种克制不住的冲动,拿起铅笔、草稿纸和电脑,开始寻找 n 不大时的规律。这可以说是本文的所有问题中最大的一个坑了——这个问题极具诱惑性,每个人第一次看到这个问题时都会认为存在一种对所有 n 都适用的构造解,于是众人一个接一个地往坑里跳,拦都拦不住。

没有人认为这个猜想是错误的,简单的计算机枚举显示,随着 n 的增加,遍历这些子集的方案数不但也随之增加,而且增长得非常之快。到了某个 n ,方案数突然跌到了 0 ,这明显是一件极不可能发生的事。但是,几十年过去了,却没有人能够证明它!

关于 Venn 图

画惯了三个集合的 Venn 图,很多人都会认为,四个圈画成一朵花一样的形状就是四个集合的 Venn 图了。其实这是不对的——四个圆只能产生 14 个区域,而四个集合将会交出 16 种情况。如果把四个圆圈像中间那幅图一样排列,就少了两个区域:只属于左下角的圆和右上角的圆的区域,以及只属于左上角的圆和右下角的圆的区域。

那么,是不是四个集合的 Venn 图就没法画了呢?也不是。如果你不是一个完美主义者,你可以像右图那样,把三个集合的 Venn 图扩展到四个集合;虽然看上去非常不美观,但是站在拓扑的角度看上去,只要逻辑上正确无误,谁管它画得圆不圆呢。

大家会自然而然地想到一个问题:右边这个图是否还能继续扩展成五个集合的 Venn 图呢?更一般的,是否随便什么样的 n 个集合的 Venn 图都可以扩展到 n + 1 个集合呢?

令人难以置信的是,这个问题竟然还没被解决!事实上,对满足各种条件的 Venn 图的研究是一个经久不衰的话题,与 Venn 图相关的猜想绝不止这一个。

出现次数超过一半的元素

令 U 是一个有限集,S1 , S2 , … , Sn 都是 U 的非空子集,它们满足任意多个集合的并集仍然在这些集合里。证明,一定能找到某个元素,它出现在了至少一半的集合里。

不可思议,即使是最基本最离散的数学研究对象——有限集——里面,也有让人崩溃的未解问题。

1999 年, Piotr Wojcik 用一种非常巧妙的方法证明了,存在一个元素出现在了至少 n/log2n 的集合里。不过,这离目标还有很大一段距离。

数学界七大迷题

◆文/佚名

在以科学家的名字命名其发现的公式和定律中,数学上的“卡尔丹诺公式”命名是一宗冤案。在中世纪的意大利,人们很喜欢在街头打数学擂台:摆上一张桌子,数学斗士各向对手交出一批题目,先解答的就是优胜者。因此培养了一批有才华的数学家,出身寒微而自学成才的数学家尼古洛·塔尔达利亚,就是其中的一个,获得了“不可战胜”的荣誉。

一次,他接到平庸的大富翁费奥里的挑战书,并从朋友处得知,费奥里向一位教师买到三次方程的一种秘密解法。他为寻找一个新解法琢磨了三天三夜,终于又获得了一次胜利。

这时,有一个名叫卡尔丹诺的科学骗子,狂妄宣称他有四万项发明,只有三次方程的解法才是他唯一的未解之谜。在他的甜言蜜语哄骗下,诚实的塔尔达利亚将解题的秘密告诉他。想不到,几天后,卡尔丹诺发表了一篇论文,将三次方程的新解法说成是他的发现。当塔尔达利亚向这个欺世盗名的坏蛋提出挑战后,竟被这个坏蛋收买的暴徒杀死了。从此,这位“不可战胜”的数学斗士不仅在擂台上消失了,他对三次方程的新解法也被不公正的历史记载歪曲了,至今在许多数学著作中,仍称为“卡尔丹诺公式”,成了数学史上的一宗大冤案。

人生箴言

以诚待人是值得赞扬的,但不要盲目地一律对待。那样只能是显得你是一个毫无头脑的迂腐之人,做事情是要讲原则的,无规矩不成方圆。

数学未解之谜

21世纪数学七大难题

最近美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣

布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以

下是这七个难题的简单介绍。

“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题

在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅

中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女

士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这

样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问

题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与

此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你

可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,

那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个

答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被

看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook

)于1971年陈述的。

“千僖难题”之二: 霍奇(Hodge)猜想

二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样

的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来

形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有

力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。

不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些

没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来

说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

“千僖难题”之三: 庞加莱(Poincare)猜想

如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表

面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸

缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说

,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球

面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体

)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

“千僖难题”之四: 黎曼(Riemann)假设

有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的

数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布

并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密

相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的

所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它

对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

“千僖难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口

量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大

约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学

之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中

所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如

此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学

家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来

没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引

进根本上的新观念。

“千僖难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性

起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气

式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯

托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的

理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托

克斯方程中的奥秘。

“千僖难题”之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想

数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾

经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正

如马蒂雅谢维奇(YuVMatiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一

般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷

通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特

别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(

1)不等于0,那么只存在有限多个这样的点。

《素数之恋伯恩哈德·黎曼和数学中最大的未解之谜》pdf下载在线阅读,求百度网盘云资源

天使和恶魔

天使和恶魔在一个无限大的棋盘上玩游戏。每一次,恶魔可以挖掉棋盘上的任意一个格子,天使则可以在棋盘上飞行 1000 步之后落地;如果天使落在了一个被挖掉的格子上,天使就输了。

问题:恶魔能否困住天使(在天使周围挖一圈厚度 1000 的坑)?

这是 Conway 大牛的又一个经典谜题。经常阅读这个 Blog 的人会发现, Conway 大牛的出镜率极高。不过这一次,Conway 真的是伤透了不少数学家的脑筋。作为一个很“正常”的组合游戏,天使与恶魔的问题竟然一直没能得到解决。目前已经有的结论是,如果天使每次只能移动一步,恶魔一定能获胜。不过,天使只要能每次飞两步,似乎就已经很无敌了。当然,魔鬼的优势也不小——它不用担心自己“走错”,每多挖一个坑对于它来说都是有利的。

话说回来, Conway 本人似乎仍然相信天使能赢——他悬赏了 1000 美元征求恶魔必胜的证明,但只悬赏了 100 美元征求天使必胜的证明

1+1=2是因为天使与恶魔定下了规矩,天使要求恶魔不要一次把所有格子走完,恶魔要求天使不要一次就飞2000格。万事万物都是从定下规矩开始变得有序,如果规矩太陈旧了,就要打破它,重新再制定新的。于是就产生了后来了减,乘,除运算。

数学界的未解之谜

《素数之恋》((美)约翰·德比希尔)电子书网盘下载免费在线阅读

链接:> 密码:uvjl

书名:素数之恋

作者:(美)约翰·德比希尔

译者:陈为蓬

豆瓣评分:91

出版社:上海科技教育出版社

出版年份:2008-12-01

页数:398

内容简介:

1859年8月,没什么名气的32岁数学家黎曼向柏林科学院提交了一篇论文,题为“论小于一个给定值的素数的个数”。在这篇论文的中间部分,黎曼作了一个附带的备注——一个猜测,一个假设。他向那天被召集来审查论文的数学家们抛出的这个问题,结果在随后的年代里给无数的学者产生了近乎残酷的压力。时至今日,在经历了150年的认真研究和极力探索后,这个问题仍然悬而未决。这个假设成立还是不成立?

已经越来越清楚,黎曼假设掌握着打开各种科学和数学研究之大门的钥匙,但它的解答仍诱人地悬在那里,正好让我们伸手够不着。依赖于素数特性的现代密码编制术和破译术,其根基就在于这个假设。在1970年代的一系列非凡性进展中,显示出甚至原子物理学也以尚未被完全了解的方式与这个奇怪难题扯上了关系。

在《素数之恋》中,极其明晰的数学阐释文字与行文优雅的传记和历史篇章交替出现,它对一个史诗般的数学之谜作了迷人而流畅的叙述,而这个谜还将继续挑战和刺激着世人。

作者简介:

根据所受的教育,约翰·德比希尔(John Derbyshire)是一位数学家和语言学家;根据所从事的职业,他是一位系统分析师;而在业余时间,他是一位著名的作家。

他的成名作是《梦见柯立芝》(Seeing Calvin Coolidge in a Dream),这部l996年出版的小说大受人们欢迎,亚德利(Jonathan Yardley)在《华盛顿邮报·图书世界》(Washington Post Book World)上对它赞赏有加,《纽约时报·书评》(The New York Times Book Review)、《纽约客》(The New Yorker)、《波士顿环球报》(The Bosun Globe)等报刊也一致给予好评。他的作品还频繁出现在《国家评论》(National Review)和《新标准》(The New Criterion)杂志上。

德比希尔在英国出生并成长.约20年前来到美国安家。他目前和妻子及两个孩子住在纽约的亨廷顿。

“千僖难题”之一:P (多项式算法)问题对NP (非多项式算法)问题

“千僖难题”之二:霍奇(Hodge)猜想

“千僖难题”之三:庞加莱(Poincare)猜想

“千僖难题”之四:黎曼(Riemann)假设

“千僖难题”之五:杨-米尔斯(Yang-Mills)存在性和质量缺口

“千僖难题”之六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性

“千僖难题”之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dye)猜想