超声波应用于检验、处理、清洗、加湿器、基础研究、除油、医学检查、工业自动化控制、制药、超声波对化妆品的分散、超声波对酒的醇化—催陈技术。利用超声的机械作用、空化作用,可进行超声焊接、钻孔、固体的粉碎、乳化 、脱气、除油、去锅垢、清洗、灭菌等,在工矿业、农业、医疗等各个部门获得了应用。

超声波是一种波长极短的机械波,在空气中波长一般短于2cm(厘米)。它必须依靠介质进行传播,无法存在于真空(如太空)中。它在水中传播距离比空气中远,但因其波长短,在空气中则极易损耗,容易散射,不如可听声和次声波传得远,不过波长短更易于获得各向异性的声能,可用于清洗、碎石、杀菌消毒等。在医学、工业上有很多的应用。


超声波的用途四年级

超声波可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。

超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律没有本质上的区别。但是超声波的波长很短,只有几厘米,甚至千分之几毫米。与可听声波比较,超声波具有许多奇异特性:传播特性,超声波的波长很短,通常的障碍物的尺寸要比超声波的波长大好多倍,因此超声波的衍射本领很差,它在均匀介质中能够定向直线传播。

超声波的波长越短,该特性就越显著。功率特性,当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。声波功率就是表示声波做功快慢的物理量。在相同强度下,声波的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。空化作用。

当超声波在介质的传播过程中,存在一个正负压强的交变周期,在正压相位时,超声波对介质分子挤压,改变介质原来的密度,使其增大。

超声波的机械效应:

超声在介质中前进时所产生的效应。(超声在介质中传播是由反射而产生的机械效应)它可引起机体若干反应。超声振动可引起组织细胞内物质运动,由于超声的细微按摩,使细胞浆流动、细胞震荡、旋转、摩擦、从而产生细胞按摩的作用,也称为“内按摩”这是超声波治疗所独有的特性,可以改变细胞膜的通透性,刺激细胞半透膜的弥散过程。

促进新陈代谢、加速血液和淋巴循环、改善细胞缺血缺氧状态,改善组织营养、改变蛋白合成率、提高再生机能等。使细胞内部结构发生变化,导致细胞的功能变化,使坚硬的结缔组织延伸,松软。超声波的机械作用可软化组织,增强渗透,提高代谢,促进血液循环,刺激神经系统和细胞功能,因此具有超声波独特的治疗意义。

超声波在生活中还有什么用途呢

超声波是频率高于20000赫兹的声波,它具有方向性好、穿透能力强、易于获得较集中的声能、在水中传播距离远等特性,被科学家广泛用于测距、测速、清洗、焊接、碎石、杀菌消毒等方面在医学、军事、工业、农业上都有很多的应用

超声波在生活中的用途?

超声波在生活中可用于检测、清洗、杀菌消毒等,常用在医学、军事、工业、农业方面。

超声波的方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。

超声波探伤仪利用超声波穿透能力很强的特点,可以制成超声波探伤仪探查金属内部有无气泡或裂缝等。超声波除油将黏附有油污的制件放在除油液中,并使除油过程处于一定频率的超声波场作用下的除油过程,称为超声波除油。

超声波的特点

1、超声波在传播时,波长短,方向性强,能量易于集中。

2、超声波能在各种不同媒质中传播,且可传播足够远的距离。

3、超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗。

4、超声波可在气体、液体、固体、固熔体等介质中有效传播。

5、超声波可传递能量。

6、超声波会产生反射、干涉、叠加和共振现象。

7、能量大,声强与振幅,质点震动频率的关系I=1/2ρCA^2ω^2,相同振幅条件下,能量与频率的平方正比。

超声波和次声波的用途有哪些啊?

超声波是声波的一种,而声波是一种机械波,即因物体振动而产生的一种纵波,每秒震动的次数称作声波的频率(单位是赫兹:Hz)。

上图音叉产生的声波引起了水面震动

和人眼只能看到特定波长类似(大致为300纳米到700纳米内的电磁波),人耳只能听到频率大致为20赫兹到2万赫兹的声波,其中频率超过2万赫兹的声波被称作超声波。

超声波是如何发现的?

人耳是无法听到超声波的,但是一些动物却可以。在1794年,斯帕兰扎尼就发现了蝙蝠是通过一种听不到的声音进行导航的。

在1876年高尔顿发明了狗哨,这是一种特殊的哨子,这种哨子能发出频率为2万赫兹到5万赫兹的声波,这种声波已经超出了人类听觉极限,但是猫和狗却能听见,因为狗狗的听力范围上限约为4万赫兹,猫的听力上限大致为6万赫兹。

所以说超声波大致在200多年前就发现了,而真正可以应用的超声波,是在居里夫人的丈夫皮埃尔·居里和他的兄弟在1880年发现压电效应之后,可以根据压电效应来发射和检测超声波,由此开启了超声波应用的大门。

超声波的特点

因为波长和频率成反比,而超声波频率比较高,所以波长短,这意味着超声波具有良好的方向性,而且由于波长短,频率高,震动强烈,所以具有较高的能量。

超声波还具有良好的穿透性,所以能够在物质内传播较远的路径。基于这些特点,超声波的应用也分为两大领域。

超声波的应用领域

因为方向性好,而且穿透性强,主要有两种应用领域,第一种是检测和探测,比如医学上常用的B超,根据人体对超声波的反射规律,来探查人体内部结构,而且对人体损害小,是临床医学不可或缺的一种诊断方法。

还有声呐系统,其原理也是超声波,广泛应用于航海和航空领域,可以用来探测前方的障碍物体。此外还有很多类似的应用,比如专门探测精密零件表面生产情况的超声波探伤仪。

第二个领域是超声处理,这是靠超声波强大的能量实现的,比如利用超声波清洗眼镜,工厂中除尘,超声波焊接等,这都是依靠超声波强烈的震动完成的。

超声波有哪些用途呢?

超声波:

1超声焊接

2超声雾化

3超声钻孔

4超声分散

5超声切削

6超声电火化联合加工

7超声波清洗

次声波的应用从20世纪50年代开始,并逐渐广泛地被人们所重视。次声波的应用前景大致有这样几个方面:�

(1)通过研究自然现象所产生的次声波的特性和产生的机理,更深入地研究和认识这些自然现象的特征与规律。例如,利用极光所产生的次声波,可以研究极光活动的规律。�

(2)利用所接收到的被测声源产生的次声波,可以探测声源的位置、大小和研究其他特性。例如,通过接收核爆炸、火箭发射或者台风产生的次声波,来探测出这些次声源的有关参量。�

(3)预测自然灾害性事件。许多灾害性的自然现象,如火山爆发、龙卷风、雷暴、台风等,在发生之前可能会辐射出次声波,人们就有可能利用这些前兆现象来预测和预报这些灾害性自然事件的发生。�

(4)次声波在大气层中传播时,很容易受到大气介质的影响,它与大气层中的风和温度分布等因素有着密切的联系。因此,可以通过测定自然或人工产生的次声波在大气中的传播特性,探测出某些大规模气象的性质和规律。这种方法的优点在于可以对大范围大气进行连续不断的探测和监视。�

(5)通过测定次声波与大气中其他波动的相互作用的结果,探测这些活动特性。例如,在电离层中次声波的作用使电波传播受到行进性干扰,可以通过测定次声波的特性,进一步揭示电离层扰动的规律。�

(6)人和其他生物不仅能够对次声波产生某些反应,而且他(或它)们的某些器官也会发出微弱的次声波。因此,可以利用测定这些次声波的特性来了解人体或其他生物相应器官的活动情况。

参考资料:

>

塑胶熔接:可用于玩具业,文具业,家电业,电子业,食品业,通信业,交通业,纺织业

超声清洗:可用于五金电子业,航空业,钟表玻璃,化纤业,光学及珠宝行业

还可用于深、高度测量业, 医学行业等