正交化使得计算更加方便,最简单的例子就是求逆,需要计算半天,但正交阵求逆很简单,只需转置一下就可以了。从几何上说,正交基就像一个欧式空间,比如三维空间的x轴,y轴,z轴,没有正交化的就是非欧几何,比如说用 也可以作为一组基,但别的向量用这组基表示不方便。其实用正交基的好处在于数值计算上,不用正交基的话计算不稳定,会随着计算过程逐步积累误差,最后可能会使得误差过大计算结果根本不可用,而正交基不会发生这种问题。

施密特正交化的几何意义是什么

正交化使得计算更加方便,最简单的例子就是求逆,需要计算半天,但正交阵求逆很简单,只需转置一下就可以了。从几何上说,正交基就像一个欧式空间,比如三维空间的x轴,y轴,z轴,没有正交化的就是非欧几何,比如说用(1 0 0)(1 1 0) (1 1 1)也可以作为一组基,但别的向量用这组基表示不方便。其实用正交基的好处在于数值计算上,不用正交基的话计算不稳定,会随着计算过程逐步积累误差,最后可能会使得误差过大计算结果根本不可用,而正交基不会发生这种问题。

施密特正交化有什么作用啊?

如下:

施密特正交化(Schmidt orthogonalization)是求欧氏空间正交基的一种方法。从欧氏空间任意线性无关的向量组α1,α2,……,αm出发,求得正交向量组β1,β2,……,βm,使由α1,α2,……,αm与向量组β1,β2,……,βm等价,再将正交向量组中每个向量经过单位化,就得到一个标准正交向量组,这种方法称为施密特正交化。

相关信息:

施密特正交化首先需要向量组b1,b2,b3...一定是线性无关的。一般解决的问题是特征向量,同一个特征值的特征向量不一定是线性无关的,但是不同特征值的特征向量一定是线性相关的。

选取向量b1作为基准向量c1,那么c2就等于b2减去b2和c1的内积除以c1和c1的内积再乘以c1,记住诸侯一定是矩阵的形式。包括c3等于b3减去b3与c1的内积乘以b1减去c3与b2的内积除以c2与c2的内积乘以c2。

施密特正交化是什么意思?

对于n阶矩阵,正交变换求正交矩阵时,如果同一特征值的特征向量没有正交,则需要施密特正交化使其正交。

施密特正交化(Schmidt orthogonalization)是求欧氏空间正交基的一种方法。从欧氏空间任意线性无关的向量组α1,α2,……,αm出发,求得正交向量组β1,β2,……,βm,使由α1,α2,……,αm与向量组β1,β2,……,βm等价,再将正交向量组中每个向量经过单位化,就得到一个标准正交向量组,这种方法称为施密特正交化。

线性代数:

线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。

线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。

线代中,施密特正交化有什么具体的用处?简便运算?我怎么觉得更复杂了

在二次型求标准形的过程中:

如果二次型矩阵为A,要将二次型标准化,就是要找到矩阵C使得,能够实现如下变化:

令x=Cy这样得到的二次型为标准形

这样我们可以用“求特征值,然后求对应特征向量,得到一个由线性无关的特征向量构成的矩阵D”,该矩阵满足如下关系:

D不一定是正交矩阵(这样就不能满足第一个式子),所以将D进行施密特正交化后,其转置矩阵便等于逆矩阵,这样就能满足第一个式子了,于是得到了进行二次型标准化的 可逆转换矩阵。