光合作用是植物、藻类等生产者和某些细菌,利用光能,将二氧化碳、水或是硫化氢转化为碳水化合物。

光合作用的原理:

绿色植物利用太阳的光能,同化二氧化碳和水制造有机物质并释放氧气,光合作用所产生的有机物主要是碳水化合物,并释放出能量。

光合反应的过程:

光反应:光照在植物的色素分子上,其能量被吸收转化为叶绿体膜内外的氢离子浓度差,然后作用于ATP合成酶,导致ATP的合成;

暗反应:植物吸收二氧化碳,并与糖结合,在酶的参与下,与水反应生成还原的糖

光合作用的原理是什么?

光合作用公式为:6CO2+12H2O===C6H12O6+6O2+6H2O。

光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。

绿色植物利用太阳的光能,同化二氧化碳(CO2)和水(H2O)制造有机物质并释放氧气的过程,称为光合作用。光合作用所产生的有机物主要是碳水化合物,并释放出能量。

意义

把无机物变成有机物

植物通过光合作用制造有机物的规模是非常巨大的。据估计,植物每年可吸收CO2约合成约的有机物。地球上的自养植物同化的碳素,40%是由浮游植物同化的,余下60%是由陆生植物同化的。

人类所需的粮食、油料、纤维、木材、糖、水果等,无不来自光合作用,没有光合作用,人类就没有食物和各种生活用品。换句话说,没有光合作用就没有人类的生存和发展。

植物光合作用原理是什么 什么是光合作用

1、光合作用的原理是依靠其他的方式来进行对营养的摄取,植物就是所谓的自养生物的一种。对于绿色植物来说,在阳光充足的白天(在光照强度太强的时候植物的气孔会关闭,导致光合作用强度减弱),它们利用太阳光能来进行光合作用,以获得生长发育必需的养分。

2、这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经由气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉等物质,同时释放氧气。

请问光合作用的原理是什么?

你好, 即光能合成作用,是指含有叶绿体绿色植物、动物和某些细菌,在可见光的照射下,经过光反应和碳反应(旧称暗反应),利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。同时也有将光能转变为有机物中化学能的能量转化过程。光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是地球碳-氧平衡的重要媒介。 这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经由气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉等物质,同时释放氧气。
光合作用是将太阳能转化为ATP中活跃的化学能再转化为有机物中稳定的化学能的过程!
化学方程式
CO2+H2O→(CH2O)+O2(反应条件:光能和叶绿体)
12H2O + 6CO2+ 阳光 → C6H12O6(葡萄糖)+ 6O2+ 6H2O(与叶绿素产生化学作用)
(化学反应式12H2O + 6CO2→ C6H12O6(葡萄糖) + 6O2+ 6H2O 标条件是 酶 和 光照,下面是叶绿体)
H2O→2H+ 2e- + 1/2O2(水的光解)
NADP+ + 2e- + H+ → NADPH(递氢)
ADP+Pi+能量→ATP (递能)
CO2+C5化合物→2C3化合物(二氧化碳的固定)
2C3化合物+4NADPH→C5糖(有机物的生成或称为C3的还原)
C3(一部分)→C5化合物(C3再生C5)
C3(一部分)→储能物质(如葡萄糖、蔗糖、淀粉,有的还生成脂肪)
ATP→ADP+Pi+能量(耗能)
C3:某些3碳化合物
C5:某些5碳化合物
能量转化过程:光能→电能→ATP中活跃的化学能→有机物中稳定的化学能→ATP中活跃的化学能
注:因为反应中心吸收了特定波长的光后,叶绿素a激发出了一个电子,而旁边的酵素使水裂解成氢离子和氧原子,多余的电子去补叶绿素a分子上缺的。产生ATP与NADPH分子,这个过程称为电子传递链(Electron Transport Chain)
电子传递链分为循环和非循环。
非循环电子传递链从光系统2出发,会裂解水,释放出氧气,生产ATP与NADPH.
循环电子传递链不会产生氧气,因为电子来源并非裂解水。最后会生成ATP.
可见,从叶绿素a吸收光能开始,就发生了电子的移动,形成了电子传递链,有了电子传递链,才能使得ATP合成酶将ADP和磷酸合成ATP. 因此,它的能量转化过程为:
光能→电能→不稳定的化学能(能量储存在ATP的高能磷酸键)→稳定的化学能(淀粉等糖类的合成)
注意:光反应只有在光照条件下进行,而只要在满足碳反应条件的情况下碳反应都可以进行。也就是说碳反应不一定要在黑暗条件下进行。

光合作用的原理和应用是什么?

一、原理

光合作用文字方程式:二氧化碳+水+光能→葡萄糖+氧气+水

植物与动物不同。绿色植物与部分微生物在阳光充足的白天,能利用太阳提供的能量来进行光合作用,以获得生长发育必需的养分,这就是所谓的 自养生物。

这个过程的关键参与者是细胞内部的叶绿体。叶绿体在阳光的作用下,把经由气孔进入叶片内部的二氧化碳和由根部吸收的水转变成为葡萄糖,同时释放出氧气:

12H2O + 6CO2 —hν→ (与叶绿素产生化学作用)C6H12O6 (葡萄糖) + 6O2 + 6H2O。

二、意义

1、 光解水,产生氧气。

2、 将光能转变成化学能,产生三磷酸腺苷 (ATP),为碳反应提供能量。

3、 利用水光解的产物氢离子,合成NADPH及氢离子,为碳反应提供还原剂。

研究意义

研究光合作用,对农业生产,环保等领域起着基础指导的作用。知道光反应暗反应的影响因害,如建造温室,加气流通,以使农作物增产。

人们又了解到RuBisCO的两面性,即既能催化光合作用,又会推动光呼吸作用,正在尝试行改造,减少后者,避免和能量的消耗,提高农作物的产量。当了解到光合作用与植物呼吸的关系,人们就可以布置好家居植物摆设。

比如晚上就不应把植物布置在室内,以避免因植物呼吸而引起室内二氧化碳浓度增高。

光合作用的重要作用有:把无机物转化为有机物,植物的光合作用间接或直接的为人类和动物界提供了食物;将太阳能转化为可利用的化学能,煤、木材、天然气的等必须的能源都是通过光合作用由太阳能转化而来的;维持了大气中二氧化碳和氧气的平衡。

光合作用的原理是什么

光合作用(Photosynthesis),即光能合成作用,是指含有叶绿体绿色植物和某些细菌,在可见光的照射下,经过光反应和碳反应(旧称暗反应),利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。同时也有将光能转变为有机物中化学能的能量转化过程。
光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是地球碳-氧平衡的重要媒介。光合作用可分为产氧光合作用(oxygenic photosynthesis)和不产氧光合作用(anoxygenic photosynthesis)。是绿色植物、和某些细菌利用叶绿素,在可见光的照射下,将二氧化碳和水转化为有机物(主要是淀粉),并释放出氧气的生化过程。对于生物界的几乎所有生物来说,这个过程是他们赖以生存的关键,而地球上的碳氧循环,光合作用是必不可少的。

光合作用的定义和原理

光合作用(Photosynthesis),即光能合成作用,是植物、藻类和某些细菌,在可见光的照射下,经过光反应和碳反应,利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。
简单原理
植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取。就是所谓的自
叶绿体
养生物。对于绿色植物来说,在阳光充足的白天,它们将利用阳光的能量来进行光合作用,以获得生长发育必需的养分。
这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经由气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉,同时释放氧气。
化学方程式
H2O→2H+
1/2O2(水的光解)
NADP+
+
2e-
+
H+

NADPH(递氢)
ADP+Pi→ATP
(递能)
CO2+C5化合物→2C3化合物(二氧化碳的固定)
2C3化合物+4NADPH+ATP→(CH2O)+
C5化合物+H2O(有机物的生成或称为C3的还原)
ATP→ADP+PI(耗能)
能量转化过程:光能→不稳定的化学能(能量储存在ATP的高能磷酸键)→稳定的化学能(糖类即淀粉的合成)
注意:光反应只有在光照条件下进行,而只要在满足碳反应条件的情况下碳反应都可以进行。也就是说碳反应不一定要在黑暗条件下进行。

什么是光合作用?

光合作用(Photosynthesis),即光能合成作用,是植物、藻类和某些细菌,在可见光的照射下,经过光反应和暗反应,利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光合作用(Photosynthesis)是绿色植物利用叶绿素等光合色素和某些细菌(如带紫膜的嗜盐古菌)利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为有机物,并释放出氧气(细菌释放氢气)的生化过程。植物之所以光合作用图解被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10%~20%左右。对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键。而在地球上的碳-氧循环,(保持氧气和二氧化碳含量的相对稳定)光合作用是必不可少的。

什么是光合作用???

光合作用通常是指绿色植物(包括藻类)吸收光能,把二氧化碳(CO2)和水(H2O)合成富能有机物,同时释放氧的过程。

光合作用反应阶段:

1,光反应:

光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给 ,使它还原为  。

电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动  磷酸化生成  。

反应式: 

2,暗反应:

暗反应阶段是利用光反应生成 和  进行碳的同化作用,使气体二氧化碳还原为糖。

由于这阶段基本上不直接依赖于光,而只是依赖于  和  的提供,故称为暗反应阶段。

反应式:

总反应式: 

其中 表示糖类。

扩展资料:

光合作用植物:

1,C3类植物

二战之后,美国加州大学伯利克分校的马尔文·卡尔文与他的同事们研究一种名叫Chlorella的藻,以确定植物在光合作用中如何固定CO2。此时C示踪技术和双向纸层析法技术都已经成熟,卡尔文正好在实验中用上此两种技术。

他们将培养出来的藻放置在含有未标记CO2的密闭容器中,然后将C标记的CO2注入容器,培养相当短的时间之后,将藻浸入热的乙醇中杀死细胞,使细胞中的酶变性而失效。

接着他们提取到溶液里的分子。然后将提取物应用双向纸层析法分离各种化合物,再通过放射自显影分析放射性上面的斑点,并与已知化学成分进行比较。

卡尔文在实验中发现,标记有C的CO2很快就能转变成有机物。在几秒钟之内,层析纸上就出现放射性的斑点,经与已知化学物比较,斑点中的化学成分是3-磷酸甘油酸(3-phosphoglycerate,PGA),是糖酵解的中间体。

这第一个被提取到的产物是一个三碳分子,所以将这种CO2固定途径称为C3途径,将通过这种途径固定CO2的植物称为C3植物。

后来研究还发现,CO2固定的C3途径是一个循环过程,人们称之为C3循环。这一循环又称卡尔文循环。

C3类植物(碳三植物),如米和麦,二氧化碳经气孔进入叶片后,直接进入叶肉进行卡尔文循环。而C3植物的维管束鞘细胞很小,不含或含很少叶绿体,卡尔文循环不在这里发生。

2,C4类植物

在20世纪60年代,澳大利亚科学家哈奇和斯莱克发现玉米、甘蔗等热带绿色植物,除了和其他绿色植物一样具有卡尔文循环外,CO2首先通过一条特别的途径被固定。

这条途径也被称为哈奇-斯莱克途径(Hatch-Slack途径),又称四碳二羧酸途径C4植物主要是那些生活在干旱热带地区的植物。

在这种环境中,植物若长时间开放气孔吸收二氧化碳,会导致水分通过蒸腾作用过快的流失。所以,植物只能短时间开放气孔,二氧化碳的摄入量必然少。植物必须利用这少量的二氧化碳进行光合作用,合成自身生长所需的物质。

在C4类植物叶片维管束的周围,有维管束鞘围绕,这些维管束鞘细胞含有叶绿体,但里面并无基粒或发育不良。在这里,主要进行卡尔文循环。

其叶肉细胞中,含有独特的酶,即磷酸烯醇式丙酮酸碳羧化酶,使得二氧化碳先被一种三碳化合物--磷酸烯醇式丙酮酸同化,形成四碳化合物草酰乙酸,这也是该暗反应类型名称的由来。

这草酰乙酸在转变为苹果酸盐后,进入维管束鞘,就会分解释放二氧化碳和一分子丙酮酸。二氧化碳进入卡尔文循环,后同C3进程。而丙酮酸则会被再次合成磷酸烯醇式丙酮酸,此过程消耗ATP。

也就是说,C4植物可以在夜晚或气温较低时开放气孔吸收CO2并合成C4化合物,再在白天有阳光时借助C4化合物提供的CO2合成有机物。

该类型的优点是,二氧化碳固定效率比C3高很多,有利于植物在干旱环境生长。C3植物行光合作用所得的淀粉会贮存在叶肉细胞中,因为这是卡尔文循环的场所,而维管束鞘细胞则不含叶绿体。而C4植物的淀粉将会贮存于维管束鞘细胞内,因为C4植物的卡尔文循环是在此发生的。

参考资料:

百度百科----光合作用

什么是光合作用?

光合作用吸收所有呼吸生物体产生的二氧化碳,并将氧气重新引入大气中。(KPG|u Payless| Shutterstock)

光合作用是植物、藻类和某些细菌利用太阳光能量并将其转化为化学能的过程。在这里,我们描述光合作用的一般原理,并强调科学家是如何研究这一自然过程,以帮助开发清洁燃料和可再生能源。

类型的光合作用

有两种类型的光合作用过程:氧化光合作用和非氧化光合作用。氧合和氧合光合作用的一般原理非常相似,但氧合光合作用是最常见的,见于植物、藻类和蓝藻中。“KdSPE”“KdSPs”在氧合光合作用期间,光能将电子从水(H2O)转移到二氧化碳(CO2),以产生碳水化合物。在这种转移过程中,CO2“被还原”,或接收电子,水变成“氧化”,或失去电子。最终,氧与碳水化合物一起产生。“KdSPE”“KdSPs”氧合光合作用通过吸收所有呼吸生物体产生的二氧化碳并将氧气重新引入大气而起到呼吸的平衡作用。另一方面,“KdSPE”“KDSPs”,无氧光合作用使用除水以外的电子供体。这一过程通常发生在紫色细菌和绿色硫细菌等细菌中,这些细菌主要存在于各种水生生境中。

“无氧光合作用不产生氧气-因此得名,”威斯康星大学麦迪逊分校(University of Wisconsin Madison)植物学教授大卫•鲍姆(David Baum)说产生什么取决于电子供体。例如,许多细菌利用臭鸡蛋嗅到的硫化氢气体,产生固体硫作为副产品。

虽然这两种光合作用都是复杂的、多步骤的事情,整个过程可以概括为一个化学方程式。“KdSPE”“KdSPs”氧合光合作用的描述如下:“KdSPs”6CO2+12H2O+光能-C6H12O6+6O2+6H2O“KdSPE”“KdSPs”,这里六个分子的二氧化碳(CO2)与12个水分子(H2O)结合使用光能。最终的结果是形成一个碳水化合物分子(C6H12O6或葡萄糖)和六个可呼吸的氧和水分子。

类似,各种各样的无氧光合作用反应可以用一个单一的通用公式来表示:

CO2+2H2A+光能→[CH2O]+2A+H2O

方程中的字母a是一个变量,H2A代表潜在的电子给体。例如,A可以代表电子供体硫化氢(H2S)中的硫,伊利诺伊大学香槟分校的植物生物学家Govindjee和John Whitmarsh在《光生物学的概念:光合作用和光形态发生》(Narosa出版社和Kluwer学术出版社,1999)一书中解释道太阳光产生光合作用的能量。光合作用装置

以下是光合作用所必需的细胞成分。

色素

色素是赋予植物、藻类和细菌颜色的分子,但它们也负责有效地捕捉阳光。不同颜色的颜料吸收不同波长的光。下面是三个主要的类群。

叶绿素:这些绿色颜料能够捕捉蓝光和红光。叶绿素有三个亚型,称为叶绿素a、叶绿素b和叶绿素c。根据尤金·拉比诺维奇和戈文吉在其著作《光合作用》(Wiley,1969)中的说法,叶绿素a存在于所有光合作用植物中。还有一种细菌变种被恰当地命名为细菌叶绿素,它能吸收红外光。这种色素主要存在于紫色和绿色细菌中,它们能进行无氧光合作用。类胡萝卜素:这些红色、橙色或黄色颜料吸收蓝绿色光线。类胡萝卜素的例子有叶黄素(黄色)和胡萝卜素(橙色),胡萝卜素从中获得颜色。藻胆素:这些红色或蓝色的色素吸收波长的光,而叶绿素和类胡萝卜素对波长的光吸收不好。它们见于蓝藻和红藻中。

质体

光合真核生物的细胞质中含有称为质体的细胞器。根据新泽西罗格斯大学研究人员Cheong Xin Chan和Debasish Bhattacharya在《自然教育》杂志上发表的一篇文章,植物和藻类中的双膜质体被称为原生质体,而浮游生物中发现的多膜质体被称为次生质体一般含有色素或能储存营养物质。无色和无色素的白质体储存脂肪和淀粉,而染色质体含有类胡萝卜素,叶绿体含有叶绿素,如杰弗里·库珀的书《细胞:分子方法》(Sinauer Associates,2000年)中所述。

光合作用发生在叶绿体中;特别是,在基粒和基质区。基粒是细胞器最里面的部分;一组圆盘状的膜,像盘子一样堆积成柱状。单个圆盘称为类囊体。电子的转移就是在这里发生的。基粒柱间的空隙构成基质。

叶绿体类似于线粒体,细胞的能量中心,因为它们有自己的基因组或基因 *** ,包含在环状DNA中。这些基因编码细胞器和光合作用所必需的蛋白质。与线粒体一样,叶绿体也被认为是通过内共生过程起源于原始细菌细胞。

“质体起源于被吞噬的光合细菌,这些细菌是在十亿多年前由单细胞真核细胞获得的,”鲍姆告诉《生活科学》。鲍姆解释说,叶绿体基因的分析表明,它曾经是蓝藻群的一员,蓝藻群是“能完成产氧光合作用的一类细菌”。在他们2010年的文章中,

指出,次生质体的形成不能很好地解释为蓝藻,这类质体的起源仍然是一个争论的问题。“KdSPE”“KdSPs”触角“KdSPE”“KdSPs”色素分子与蛋白质相关联,这使得它们能够向光和向彼此移动。亚利桑那州立大学教授Wim Vermaas的一篇文章称,一个由100到5000个色素分子组成的大 *** 构成了“触角”。这些结构有效地以光子的形式从太阳捕获光能。

最终,光能必须转移到一种色素-蛋白质复合物上,这种复合物能够以电子的形式将光能转化为化学能。例如,在植物中,光能被转化为叶绿素色素。当叶绿素色素排出一个电子,这个电子就可以转移到一个合适的接受者身上时,就完成了向化学能的转换。

反应中心

色素和蛋白质将光能转换成化学能并开始电子转移过程,被称为反应中心。

光合作用过程

植物光合作用的反应分为需要阳光和不需要阳光的反应。这两种反应都发生在叶绿体中:类囊体中的光依赖反应和基质中的光独立反应。

光依赖反应(也称为光反应):当一个光子击中反应中心时,像叶绿素这样的色素分子释放出一个电子。

做有用工作的诀窍是阻止这个电子找到它的w“回到它原来的家,”鲍姆告诉现场科学这是不容易避免的,因为叶绿素现在有一个“电子空穴”倾向于吸引附近的电子。

释放的电子通过电子传输链设法逃逸,电子传输链产生产生产生ATP(细胞化学能源三磷酸腺苷)和NADPH所需的能量。原始叶绿素色素中的“电子孔”是通过从水中吸收一个电子来填充的。结果,氧被释放到大气中。

与光无关的反应(也称为暗反应,称为卡尔文循环):光反应产生ATP和NADPH,这是驱动暗反应的丰富能源。卡尔文循环包括三个化学反应步骤:碳固定、还原和再生。这些反应使用水和催化剂。来自二氧化碳的碳原子是固定的,当它们被构建成最终形成三个碳糖的有机分子时。这些糖随后被用来制造葡萄糖或循环利用,再次启动卡尔文循环。

这张2010年6月的卫星照片显示,南加州的池塘正在生长藻类。(PNNL,QuickBird卫星)光合作用在未来

光合作用生物是一种可能的方式来产生清洁燃烧的燃料,如氢甚至甲烷。最近,芬兰图尔库大学的一个研究小组研究了绿藻产生氢气的能力。绿藻如果首先暴露在黑暗、厌氧(无氧)的环境中,然后暴露在光下,它们可以产生几秒钟的氢气。正如他们在2018年发表在《能源与环境科学》杂志上的研究报告所述,研究小组设计了一种将绿藻的氢气产生时间延长三天的方法在人工光合作用领域也取得了进展。例如,来自加利福尼亚大学的一组研究人员伯克利开发了一种人造系统,用纳米线或直径为几十亿分之一米的电线捕获二氧化碳。这些电线进入微生物系统,通过利用阳光的能量将二氧化碳还原成燃料或聚合物。该研究小组于2015在NealNo.No.No.KDSPE“KDSPs”杂志上发表了它的设计,该研究组成员在《科学》杂志上发表了一项研究,描述了另一种人工光合系统,其中专门设计的细菌被用来利用阳光、水和二氧化碳制造液体燃料。一般来说,植物只能利用大约1%的太阳能,并在光合作用期间利用太阳能生产有机化合物。相比之下,研究人员的人工系统能够利用10%的太阳能生产有机化合物。

继续研究光合作用等自然过程,帮助科学家开发利用各种可再生能源的新方法。在阳光的照耀下,植物和细菌无处不在,利用光合作用的能量是创造清洁燃烧和碳中性燃料的合理步骤。

附加资源:

加州大学,伯克利:光合色素亚利桑那州立大学:光合及其应用简介伊利诺伊大学香槟分校:什么是光合

光和作用的原理和应用


1、光合作用:
光合作用是植物、藻类等生产者和某些细菌,利用光能,将二氧化碳、水或是硫化氢转化为碳水化合物。植物被称为食物链的生产者,因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取,在阳光充足的白天,它们利用太阳光能来进行光合作用,以获得生长发育必需的养分。

2、光合作用原理:
光合作用的关键参与者是植物体内的叶绿体,叶绿体在阳光的作用下,把经由气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉等能源物质,同时释放氧气。

3、反应条件:光照、光合色素、光反应酶