三角分别相等,三边成比例的两个三角形叫做相似三角形。
相似三角形是几何中重要的证明模型之一,是全等三角形的推广。全等三角形可以被理解为相似比为1的相似三角形。相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。
基本判定定理:
1、平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
2两边对应成比例且夹角相等,两个三角形相似。
3、三边对应成比例,两个三角形相似。
4、如
什么是相似三角形?
相似三角形是几何中重要的证明模型之一,三角分别相等,三边成比例的两个三角形叫做相似三角形,它可以被理解为相似比为1的相似三角形。
面积比和边长比的关系:
相似三角形的面积比等于边长比的平方,设小三角形的面积为s,底长为a高为h,则小三角形的面积为s等于二分之一乘以a乘以b。设大三角形的面积为S,底长为ka高为kh,则大三角形的面积为S等于二分之一乘以ka乘以kb。
相似三角形的性质:
相似三角形对应角相等,对应边成比例;相似三角形的一切对应线段,包括对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等的比等于相似比;相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。
相似三角形的定义
如果两个三角形的三个角分别相等,三条边对应成比例,那么这两个三角形叫做相似三角形。其中,对应线段的比叫做相似比。△ABC∽△DEF表示△ABC与△DEF相似。全等三角形是一种特殊的相似三角形。 扩展资料
相似三角形的性质
1、相似三角形的对应角相等
2、相似三角形对应边的比、对应高的比、对应中线的比与对应角平分线的比都等于相似比;
3、相似三角形周长的比等于相似比,相似三角形面积的'比等于相似比的平方;
4、相似三角形具有传递性:如果两个三角形分别于同一个三角形相似,那么这两个三角形也相似。
5、相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。
6、全等三角形可以看做相似比为1的特殊的相似三角形,凡是全等的三角形都相似。
相似三角形的判定方法
1、有两角对应相等;两边对应成比例,且夹角相等;三边对应成比例。
2、所有等腰直角三角形相似,所有的等边三角形都相似。
3、一条直角边与斜边成比例的两个直角三角形相似。
4、平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似。
5、三边对应平行的两个三角形相似。
什么是相似三角形?
相似三角形的认识
对应角相等,对应边成比例的两个三角形是相似三角形。(similar
triangles)。
编辑本段相似三角形的判定方法
根据相似图形的特征来判断。(对应边成比例,对应角相等)
1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;
(这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明)
2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;
3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;
4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
直角三角形相似判定定理
1.斜边与一条直角边对应成比例的两直角三角形相似。
2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
射影定理
编辑本段相似三角形的性质
1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
2.相似三角形周长的比等于相似比。
3.相似三角形面积的比等于相似比的平方。
编辑本段相似三角形的特例
能够完全重合的两个三角形叫做全等三角形。(congruent
triangles)
全等三角形是相似三角形的特例。全等三角形的特征:
1.面积大小相等。
2.形状完全相同,相似比是k=1。
全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。
因此,相似三角形包括全等三角形。
相似三角形是什么意思?相似三角形的判定定理是什么?
1、相似三角形的有关概念
(1)相似三角形:对应角相等,对应边成比例的两个三角形是相似三角形.
(2)相似比:相似三角形对应边的比.
二)、相似三角形
1、相似三角形的有关概念
(1)相似三角形:对应角相等,对应边成比例的两个三角形是相似三角形.
(2)相似比:相似三角形对应边的比.
2、平行于三角形一边的定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.
3、三角形相似的判定
(1)两角对应相等,两三角形相似.
(2)两边对应成比例且夹角相等,两三角形相似.
(3)三边对应成比例,两三角形相似.
(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,
那么这两个直角三角形相似.
4、相似三角形的性质
(1)相似三角形对应角相等,对应边成比例.
(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
(3)相似三角形周长的比等于相似比.
如有帮助望采纳
相似三角形的判定是什么?
相似三角形是指三个角分别相等,三边成比例的两个三角形。判定定理如下:
相似三角形
1、两角分别对应相等的两个三角形相似。
2、两边成比例且夹角相等的两个三角形相似。
3、三边成比例的两个三角形相似。
4、一条直角边与斜边成比例的两个直角三角形相似。
相似三角形它主要描述了在相似三角形中,边、角的关系。它是几何中重要的证明模型之一,是全等三角形的推广。全等三角形可以被理解为相似比为1的相似三角形。
相似三角形的概念
对应角相等,对应边成比例的两个三角形叫做相似三角形。
(similar triangles)互为相似形的三角形叫做相似三角形。例如右图中,若b'c'//bc,那么角b=角b',角bac=角c'a'b',是对顶角,那么我们就说△abc∽△ab'c'
什么是相似三角形
对应角相等,对应边成比例的两个三角形叫做相似三角形。(similar triangles)互为相似形的三角形叫做相似三角形。例如左图中,若B'C'//BC,那么角B=角B',角BAC=角C'A'B',是对顶角,那么我们就说△ABC∽△AB'C'
1.相似三角形对应角相等,对应边成比例。
2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3.相似三角形周长的比等于相似比。
4.相似三角形面积的比等于相似比的平方。
5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
6.若a:b =b:c,即b的平方=ac,则b叫做a,c的比例中项
7.c/d=a/b 等同于ad=bc.
8.必须是在同一平面内的三角形里
(1)相似三角形对应角相等,对应边成比例.
(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
(3)相似三角形周长的比等于相似比
如何判定相似三角形
相似三角形的判定定理,有下列结论:
定理 两角分别对应相等的两个三角形相似。
定理 两边成比例且夹角相等的两个三角形相似。
定理 三边成比例的两个三角形相似。
定理 一条直角边与斜边成比例的两个直角三角形相似。
根据以上判定定理,可以推出下列结论:
推论 三边对应平行的两个三角形相似。
推论 一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
相似三角形的特殊情况
1.凡是全等的三角形都相似
全等三角形是特殊的相似三角形,相似比为1。反之,当相似比为1时,相似三角形为全等三角形。
2. 有一个顶角或底角相等的两个等腰三角形都相似
由此,所有的等边三角形都相似。
怎么证相似三角形
相似三角形的判定定理:
1、两角分别对应相等的两个三角形相似。
2、两边成比例且夹角相等的两个三角形相似。
3、三边成比例的两个三角形相似。
4、一条直角边与斜边成比例的两个直角三角形相似。
根据以上判定定理,可以推出下列结论:
1、三边对应平行的两个三角形相似。
2、一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
扩展资料:
相似三角形是几何中重要的证明模型之一,是全等三角形的推广。全等三角形可以被理解为相似比为1的相似三角形。相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。
三角形的可解性:
在一个三角形中,必然存在三角、三边、三高、周长、面积这十一个量,若已知其中任意三个不全为角的条件,则可求出其他八个条件(简称知三求八)。
相似三角形常见辅助线做法:作三角形边上的高。
遵循原则:
①特殊角原则,即作高时常常把特殊角放在直角三角形中进行求解。
②最长边原则,即作高时常常选择作最长边上的高,使得高在内部。
③偶数边原则,即常常将偶数边作为直角三角形的斜边,方便计算。
参考资料来源:百度百科-相似三角形