涨落说”是由玻耳兹曼于1872年提出的。这使得其成为19世纪已知的唯一两个在文献中留下对热寂说抨击的人。他从统计角度来解释这个问题:总会有宇宙的某些局部因为随机的涨落出现熵减小的情况。尽管在整个宇宙来看,熵是增加的,但随机的涨落永远会存在,于是一直都不会迎来完全的热寂说”。而人类等生命这样高度有序的存在也在因为随机涨落而出现的熵减小”的区域变得可能。热寂说维护者对于玻尔兹曼的反驳是,随机涨落的效果要大到可以产生生命这样的高度有序的可能性几乎是不存在。

因此,热寂说”是基于宇宙是个孤立、封闭系统”这样的宇宙观的。后世一部分人就是从这个角度来攻击热寂说的世界是无限的,不是封闭的,因而不能把热力学第二定律推广到全宇宙。

孤立系统熵增原理

1867年克劳修斯曾表述这样的思想“宇宙的能永远守恒,宇宙的熵永远增大”,“宇宙的熵处于极大,进一步变化的能力就越小,如果最后达到极限状态,那就任何进一步的变化都不会发生了,这个宇宙将进入一个死寂的,永恒的状态”克劳修斯的表述便是“热寂说”的最初由来.

现在的宇宙学和宇宙发展的客观事实都说明了“热寂说”是错误的,这似乎说明热力学第二定律与宇宙学不相容.

热力学与宇宙学相容的关键之一是宇宙在膨胀.

考虑一种简单情况,在一定空间里有两种物质,比如一种是辐射,一种是粒子.(在高一物理教材的绪言中有这样一段话:在宇宙大爆炸的开初,有的只是极高温的热辐射和其中隐现的高能粒子……)如果两类物质的温度不同,即辐射温度Tr≠粒子温度Tm,显然,按照热力学,经过一段时间后将会是Tr=Tm.可是如果上述空间不断膨胀,结论会完全不同.膨胀会使各类物质的温度降低,一般来说,不同物质的温度随着膨胀而降低的速度不一样.辐射温度随膨胀降低得较慢,而粒子则较快.这就是说,随着宇宙的膨胀,原来温度相同的两种物质会变得不同,即Tr>Tm,产生温度差,有人会说这个温度差不能保持,它们将由辐射和粒子之间的碰撞而消失,最后达到热平衡.

热力学与宇宙学相容关键之二是引力理论.

一箱气体,其中包含许多分子,如果气体分子分布不均匀的,按热力学第二定律演化的结果气体分子分布是均匀的,但是同样是这箱气体,如果气体分子之间的引力作用不可忽略,而且起主导作用,结果将完全不同.假定气体分子的分布开始是均匀的,在没有引力时,这是平衡态,而在引力的主导作用的条件下,均匀分布状态并不是稳定的.因为在某个局域内,由于某分子的杂乱无章的运动会使某个局域的密度会变得稍大一点,则这个局域的引力将会变得更强一些,这就会吸收更多的物质,形成更大的密度,这就是破坏不均匀.

在宇宙范围内引力是主导的,所以哪怕是宇宙开始时是均匀的,无结构的,它也会产生出非均匀的有结构的状态.各种尺度的天体,就是依靠这种非均匀化的过程聚集而成的.从早期的均匀宇宙到现在非均匀宇宙就是这样演化的.

为什么宇宙并不象热死预言那样从复杂到简单,而是由简单到复杂?因为有引力.

为什么宇宙并不象热死预言那样从有序到无序,而是从无序(混乱)到有序(有结构)?因为有引力.

为什么宇宙并不象热死预言那样从非热平衡到热平衡,而是热平衡生成非热平衡?也是因为有引力.

由于引力的存在,热寂说已成为历史的一页,为什么引力有“回天之术”,保证着宇宙的进化?因为至今还没有一个完整的引力理论,所有这些问题尚有待解决.

“热寂说”一经提出,即在科学界引起了轩然大波.

1.首先对“热寂说”提出诘难的是麦克斯韦(J.Maxwell).1871年,他在《热理论》一书的末章《热力学第二定律的限制》中,设计了一个假想的存在物——“麦克斯韦妖”.麦克斯韦妖有极高的智能,可以追踪每个分子的行踪,并能辨别出它们各自的速度.这个设计方案如下:“我们知道,在一个温度均匀的充满空气的容器里的分子,其运动速度决不均匀,然而任意选取的任何大量分子的平均速度几乎是完全均匀的.现在让我们假定把这样一个容器分为两部分,A和B,在分界上有一个小孔,在设想一个能见到单个分子的存在物,打开或关闭那个小孔,使得只有快分子从A跑向B,而慢分子从B跑向A.这样,它就在不消耗功的情况下,B的温度提高,A的温度降低,而与热力学第二定律发生了矛盾”.[9]麦克斯韦认为,只有当我们能够处理的只是大块的物体而无法看出或处理借以构成物体分离的分子时,热力学第二定律才是正确的,并由此提出应当对热力学第二定律的应用范围加以限制.

尽管麦克斯韦既没有实现也没有提出任何实际的实验来检验他的假说,但这个“热力学第二定律的破坏者”却困扰了科学界一百多年,成为科学家诘难热力学第二定律并进而反对“热寂说”的著名假想实验.与麦克斯韦佯谬有关的还有后来洛歇密(Loschmid)提出的“可逆佯谬”和赛密罗(E.Zermelo)提出的“再出现佯谬”等都对单向不可逆性和热力学第二定律提出了挑战,实际上也是对“热寂说”提出了挑战.

2.在“热寂说”提出后的数十年中,对其构成最大挑战的科学假说是波尔兹曼(L.Boltzmann)的“涨落说”.波尔兹曼在对气体分子运动的研究中,最先对熵增加进行了统计解释.按照这种解释,热平衡态附近总存在着偶然的“涨落”现象,这种涨落现象并不遵从热力学第二定律.由此,波尔兹曼将气体分子运动论的观点推广到宇宙中,认为整个宇宙可以看成类似在气体状态的分子集团,围绕着整个宇宙的平衡状态则存在着巨大的“涨落”.即使在与整个广延的宇宙相比极其渺小的恒星系和银河系中,在短时期内也存在着这种相对的热平衡附近的“涨落”.按照这种假说,宇宙就必然会由平衡态返回到不平衡态.在这个区域,熵不但没有增加,而且是在减少.因此,宇宙也就不可能产生“热寂”.

波尔兹曼的“涨落说”曾广泛流传,许多人都把它作为反对“热寂说”的新发现.但天文学观测表明,至今没有任何有说服力的证据证明现在的宇宙是处在热平衡态并存在着上下“涨落”.由于缺乏事实依据,“涨落说”并没有真正从科学上解决宇宙“热寂”的问题.而且从逻辑上看,波尔兹曼的“涨落说”实际上是把宇宙“热寂”已经放在他的前提中了.因为他首先承认“涨落”是在平衡态附近发生的.而对于任何“涨落”,不论它有多大,最后必然会消失,重新回到平衡状态.尽管后来一些物理学家,如莱辛巴赫(H.Reihenbach)等发展了玻尔兹曼的思想,把时间增加的方向作为熵增加的方向,并进一步指出了宇宙中存在着熵的涨落现象,但由于同样缺乏观测证据支持而最终放弃.

3.20世纪60年代以来,以普里高津(I.Prigogine)为首的布鲁塞尔学派在研究非平衡态热力学和统计物理学的过程中,找到了开放系统由无序状态转变为有序状态的途径,提出了耗散结构理论.这一理论曾被一些人用来反对“热寂说”.

所谓“耗散结构”是指一种远离平衡态的有序结构.根据热力学第二定律,系统处在热平衡态就是有最大的混乱度,此时熵值达到最高,系统即出现所谓“热寂”.而有序结构的出现即意味着熵的降低,系统便可“起死回生”.这显然与热力学第二定律相悖.如生命的发生和物种的进化等,都是从低级到高级、从无序到有序的变化,是一个熵不断降低的过程.耗散结构理论解决了这个问题.它认为关键在于系统必须是开放的,而且系统内有序结构的产生要靠外界不断供给能量和物质以及负熵流.

耗散结构理论提出不久,一些人即将其推广到整个宇宙,认为宇宙是一个无限发展的开放系统,它远离平衡态.由于它不断吸取负熵流,因而在宇宙的一些区域内,熵不但没有增加反而有减少的趋势.因此宇宙不可能变成完全无序的“热寂”状态.《纽约时报》曾于1980年发表特稿,宣称普里高津的耗散结构理论帮助人类解决了一项科学上最扰人的似是而非的问题.[10]

然而,尽管这种理论具有很广的应用范围,但对于整个宇宙来说,由于缺乏明确的物理图像和实验基础而不被天体物理学界所认可.

4.彭加勒(J.Poincaré)从科学方法论的角度对“热寂说”提出了尖锐的批评.1890年,彭加勒在《力学原理》一书中指出,任何力学模型只能局限在有限的系统内运动.在这个封闭的系统中,运动从有序开始,经过无序状态,最后必然再回到有序状态即初始状态.因此,与系统组态相联系的既定熵值,为了能回到初始状态就必然要减少.彭加勒认为,“热寂说”的出现是由于它的提出者们采用了当时流行的力学模型法造成的.因此,应在方法论上进行变革,要么承认热力学过程能回到初始状态,要么将热力学模型根本抛弃.

5.在批评“热寂说”的各种哲学观点中,有两种观点影响最大,也最普遍.一种观点认为,热力学第二定律是从有限世界得来的,因而不能应用到无限的宇宙上.如丹皮尔(W.Dampier)在其《科学史及其与哲学和宗教的关系》一书中就认为,“把热力学原理应用于宇宙理论,其有效性是可疑的.把从这样有限的例证中推出来的结果,应用到宇宙上去,是没有道理的,即令过去利用这些结果去预言有限的独立的或等温体系的情况很有成效”.[16]另一种观点则直接否认宇宙是一个“孤立系”.实际上,这两种观点本身是相互关联的,都预先设定了宇宙是一个“无限的”“非孤立系”的前提.并且一再企图证明,宇宙是漫无边际的物质,各个部分都是相互联系的,宇宙之外还有宇宙,因而不存在孤立部分.何祚庥认为,这些论证都不能证明人们永远不能把无限宇宙当作一个统一整体来把握.[17]况且,今天的科学还不能证明宇宙是否无限.因此,这种说法并不能驳倒“热寂说”.另一方面,认为从孤立系中得出的第二定律不能推广到无限宇宙去的论证,从逻辑上看也是不严密的.小范围内的自然规律外推到大范围在逻辑上并不必然错误,科学史上就有大量这样外推的先例,如绝对零度概念、热力学第一定律以及模型方法等.既然能把热力学第一定律推广到整个宇宙,那么又为什么不能将第二定律作同样的推广呢?事实上,热力学第一定律也没有在无限的条件下做过实验.因此,这种说法从逻辑上看也是不能驳倒“热寂说”的.

“热寂说”提出一百多年来,各种争论此起彼伏,无休无止.有许多赞同者,也有许多反对者.他们都在孜孜不倦地寻求着这一疑难的最后答案.然而,最终都令无数英雄竞折腰.难怪大哲学家罗素(B.Russel)发出这样悲观的感叹,“一切时代的结晶,一切信仰,一切灵感,一切人类天才的光华,都注定要随太阳系的崩溃而毁灭.人类全部成就的神殿将不可避免地会被埋葬在崩溃宇宙的废墟之中——所有这一切,几乎如此之肯定,任何否定它们的哲学都毫无成功的希望.唯有相信这些事实真相,唯有在绝望面前不屈不挠,才能够安全地筑起灵魂的未来寄托”.[19]即使是像控制论之父维纳(N.Wiener)这样的科学巨匠,最终也“控制”不住自己沮丧的感情,几乎是在绝望中悲叹,“我们迟早会死去,很有可能,当世界走向统一的庞大的热平衡状态,那里不再发生任何真正新的东西时,我们周围的宇宙将由于热寂而死去,什么也没有留下……”([7],p.76)

三、“热寂说”“终结”了吗?

长期以来,对“热寂说”疑难的回答似乎都未能切中要害,缺乏说服力,因而一再爆发争论.然而20世纪六、七十年代以后,自从“大爆炸”宇宙模型逐渐得到天体物理学界公认以来,对“热寂说”疑难的讨论发生了根本性的转向,这一时期成了“热寂说”争论史上一个划时代的转折点.

宇宙早期曾一度处于平衡态,处处都有相同的温度,而且物质分布也是相当均匀的.大爆炸之后,宇宙才逐渐偏离热平衡态.

早在大爆炸宇宙理论为科学界公认之前,一些学者即正确地指明了解决宇宙“热寂”疑难的方向,关键在于应从宇宙中是否存在热平衡态这一根本性问题着手.([17],p.77~78)现在,大爆炸理论直接证明了宇宙在膨胀,而宇宙在膨胀则是热力学和宇宙学相容的关键,那么在一个膨胀的宇宙中是否存在着热平衡态呢?

假定有两类物质,一类是辐射,另一类是粒子,辐射温度Tr与粒子温度Tm不一样.那么,按照经典热力学,经过一段时间以后,Tr与Tm必定相同.这是在静态空间中做出的结论.然而,假如上述空间是膨胀的,结论就完全不同了.由于在膨胀过程中,不同物质的温度降低的程度不一样,辐射温度降低较慢,粒子温度降低较快,就会造成Tr大于Tm而产生温差.这与经典热力学的结论正好相反.虽然这个温差会由于辐射与粒子之间的碰撞而消失,以至达到热平衡,但是由于达到平衡所需的时间比宇宙膨胀所需的时间要长,因而辐射和粒子之间就永远不可能达到热平衡.此时系统的熵尽管不断增加(这与热力学第二定律相符),但它离平衡态却越来越远.而宇宙中发生的正是这种变化.

另一方面,宇宙膨胀的原因是由于引力的作用.有引力作用的热力学与无引力作用的热力学得出的结论完全不同.在不考虑引力的经典热力学中,加热则体系升温,冷却则体系降温,热容量是正值.而在一个自引力体系中情况刚好相反,加热则体系变冷,放热则体系升温,热容量是负值.而负热容物体的存在对于热力学来说具有根本性的影响.在一个体系中,如果同时存在着正热容物体和负热容物体,那么这个体系就具有极大的不稳定性.稍有扰动,平衡就会彻底遭到破坏而产生温差.只要有自引力体系存在,原则上就不存在稳定的热平衡,而宇宙间的天体或天体系统大多数正是这种自引力系统.尽管自引力系统中熵是增加的,但由于没有热平衡,因而熵的增加是无止境的,永远都没有极大值.[21]

因此,“热平衡的存在对整个热力学是至关重要的,热平衡是热力学的出发点.而对于引力起决定作用的体系,实际上不存在热力学意义上的热平衡态,而是不稳定的状态”.([15],p.92)这种现象在静态宇宙模型中是不可能发生的,也是开尔文和克劳修斯等人没有料想到的.

于是,人类终于从百年梦魇中醒来,爆发出热情的欢呼,“宇宙不但不会死,反而会从早期的热寂状态(热平衡态)下生机勃勃地复sū@①”,[22]“热寂说的一页,已被翻过去了”!([15],p.92)

然而,人类的欢呼似乎来得早了一点.尽管热力学意义上的宇宙“热寂”状态永远不会到来,但宇宙的命运却不会因此而变得更加令人乐观.宇宙的结局完全取决于它的初始条件,宇宙的创生与终结始终紧密相连.大爆炸理论发现了宇宙起源的真相,同时也预言了它遥远的未来.

在大爆炸理论中有一个极其重要的参量Ω=ρ[,0]/ρ[,c],其中ρ[,c]是与哈勃常数密切相关的一种宇宙临界密度,ρ[,0]是现在的宇宙密度.若ρ[,0]<ρ[,c],即Ω<1,表明宇宙是膨胀的,并且一直膨胀下去;若ρ[,0]>ρ[,c],即Ω>1,表示宇宙起初膨胀,到达一定时刻后,就将转化为收缩.若ρ[,0]=ρ[,c],则宇宙处于两者之间的临界状态.[23]由于大多数人承认的观测结果是Ω<1,因此宇宙一直永远膨胀下去成为最可能的一种状态.假使如此,未来所有恒星上的热核反应都将逐渐停止,留下的将是各种各样的宇宙“熔渣”——黑矮星、中子星和黑洞,而宇宙的背景辐射温度将不断下降,以至于无限地趋近于绝对零度,[24]最终达到另一种意义上的“冷寂”.宇宙另一种可能的状态是,当膨胀达到最高点,背景辐射的温度降到最低,此时宇宙开始收缩,温度又重新上升.当宇宙不断收缩至愈来愈接近它的最后阶段时,环境条件同大爆炸后不久起支配作用的那些条件越来越相似,宇宙又重新回到处于“热寂”状态的基本粒子“羹汤”状态.这实际上是一个反演过程.在宇宙暴缩的最后时刻,引力成为占绝对优势的作用,所有的物质都将因挤压而不复存在,包括时空本身在内的一切有形的东西统统将被消灭,只剩下一个时空奇点.[25]无论宇宙最后出现哪一种状态,其结果对人类来说都将是灭顶之灾.

这就是大爆炸理论为人类预言的宇宙未来和世界末日.由于这一理论也不合人们的期望,因而当它提出之日起同样也遭到了来自各方面的反对,并认为它是一个“倒了头”的宇宙“热寂说”.[26]然而,自然规律毕竟不以人的意志为转移,人类必须正确对待,最好的心态是,“我们决不能忽视物之有生亦必有死的事实,死亡或许正是为创生不得不付出的代价”.([25],前言,p.3)

当然,还存在着一些其他并非毫无科学根据的宇宙模型,也许会带给人类新的光明和希望.人类不应该气馁.“我们的后代也许还有数十亿年甚至数万亿年的时间来对付这场最后的大屠杀.在这段时间里,生命能够扩展到整个宇宙……并对它加以控制,因此他们可以调整自己的位置,支配一切可能的资源来对抗这场大危机”.([25],p.93~94)

无论如何,人类决不甘心坐以待毙,而科学也将一如既往地走自己的路,总有一天会给人类一个明晰的答案.

热寂说的提出及其影响

热寂说的提出及其影响

对热寂说的历史进行了较系统的考察,并对其产生的社会影响及批判作了较系统的探讨和阐述。全文分四部分:一、全面回顾了在科学史上热寂说是怎样提出的,以及一经提出后引发的各种争论及争论的焦点;二、分析了热寂说提出后产生的重大社会影响;三、着重介绍及评述了对热寂说进行的各种批判,重点是对后世影响较大的两个代表性说法恩格斯对热寂说的批判及较流行的各种观点;四、阐述和探讨了“大爆炸”的宇宙理论及其三个强有力的直接论据,以及引力对宇宙膨胀的作用,从而最终证明宇宙热寂说是不可实现的。

[关键词]热寂说;熵增加原理;近代宇宙论

“热寂说”是热力学第二定律的宇宙学推论,它既是哲学上的一个原则问题,也是物理学上无法直接验证的问题,它的意义关系到包括生命物质在内的万物生长、发展和消亡的普遍规律以及人类和宇宙的未来等问题。所以一经提出,就一直受到科学界和哲学界的广泛关注并引起激烈的争论,但尚缺乏较全面的专论。本文试图对热寂说提出的历史进行较系统的考察,并对其产生的社会影响及批判作进一步的探讨和阐述。

一 热寂说的提出

一般的热学和物理学史教科书都认为最早提出热寂说的物理学家是威廉·汤姆孙和克劳修斯。其实早在威廉·汤姆孙(W。Thomson)和克劳修斯(R。Clausius)一百多年前牛顿就已看出了他们后来提出的热寂说(heat death)。牛顿在其《光学》一书的疑问31(problems 31)中描述了后人在一百多年后描述的可怕的宇宙毁灭景象:地球、行星、彗星和太阳这些物体,以及它们上面所有的一切,均将冷却和凝冻,变为非活性的物体。并且所有腐烂、生长、繁殖和所有生命现象,均将停止。所有的行星、彗星将不再能留在它们的轨道上运动。这就是说,牛顿在建立自己力学体系之初,就已意识到它的体系不能解释非弹性碰撞过程(实际上就是牵涉到热交换的过程)的不可逆性与宇宙稳定性的矛盾。为了解决这一矛盾,牛顿提出了“主动原理保持和补偿运动”的物理思想。他指出:“所以,有一种按照主动保持和补偿运动的必要性,这就是重力的原因。行星和彗星由这个原理保持在轨道上,降落时物体获得大的运动,由发酵的原因,动物的心脏和血液保持永恒的运动和热量。地球内的部分持续生热,某些部分变得很热……太阳保持剧热并可见,以其光使万物变热。除去归之于这些主动原理之外,我们在宇宙间遇到的运动很少。”从这段话可以看出,虽然牛顿带有过分强烈的思辨性,但他在设法超脱机械论的局限性,希望用非机械论的解释摆脱力学带来的困难。然而在他那个时代,当能量、能量守恒定律以及各种运动形态均未出笼时,他的设想是很难有什么积极的成果的。为此,他只好求助于上帝的存在,希望上帝给以支援。他在同一书中又指出:“上帝既是宇宙的创造者,又是宇宙的持续的保持者。”“没有他的治理和监督,就会一事无成。说宇宙是一架大机器,无需神的干预即可以运转下去,就如同一个时钟不需要钟表匠的帮助而继续运转那样,这种观念实际上是以把上帝说成是超凡的神灵为借口,想把天意和上帝对现实的统治排除掉。”

随后,欧勒、拉格朗日、拉普拉斯和泊松等一批物理学家和数学家从数学分析方面发展了力学,他们证明,太阳系中所有的变动都是周期性的,这种变动不仅在某一有限范围内进行,而且其增强或减弱的变化也是周期性的。因此,他们得出结论,认为太阳系具有一种稳定性,而且在无限长的时期里,这种稳定性是永远不会改变的。从而他们从物理思想中排除了上帝,这当然是一个了不起的进步,但他们却由此而忽视了牛顿对于不可逆过程的担心,并想彻底抛弃这种忧虑,而宣布太阳系(乃至整个宇宙)将永远稳定,应该说这也是物理思想史上的一次后退。

由以上简单的历史回顾可知,当W·汤姆孙和克劳修斯揭示了自然过程的不可逆性这一曾在历史上争论过的问题后,为什么会引起当时许多一流物理学家的高度重视!

1852年,W·汤姆孙在关于自然界中机械能耗散的一篇论文中提出,在自然界中占统治地位的趋向是能量转变为热而使温度拉平,最终导致所有物体的工作能力减小到零,达到热寂状态。他在1862年发表了《关于太阳热的可能寿命的物理考察》论文,明确提出“热寂说”。他写道:“热力学第二个伟大定律孕含着自然的某种不可逆作用原理,这个原理表明虽然机械能不可灭,却会有一种普遍的耗散趋向,这种耗散在物质的宇宙中会造成热量逐渐增加和扩散,以及热的枯竭,如果宇宙有限并服从现有的定律,那么结果将不可避免地出现宇宙静止和死亡状态。”

从汤姆孙这段话可以看出,他从机械能转化为热而耗散和热力学第二定律,得出宇宙热寂的观点。随后克劳修斯在1865年的论文《论热的动力理论的主要方程的各种应用形式》中得出:“这个定律在宇宙中的应用,已得出一个结论,那是汤姆孙首先得出的,因此我才发表我所说的论文。”可见克劳修斯承认汤姆孙先于他提出热寂说,并启发他做进一步的尝试。

克劳修斯在1865年的上述论文中把宇宙看作一个孤立的绝热系统,在这个系统中热的正向变化总是大于负向变化,因此他认为宇宙热量的总和将向一个方向变化而趋于最终状态。另外他指出,他的熵只包含了“热含量”和“热离散度”,而未考虑当时已知的热辐射和由“以太”传播的热量等。他写道:“由此熵尚未用尽,还必须考虑辐射热,或以太振动方式通过宇宙空间弥散热的其它形式,以及不包括在热名义下的那些扩展更远的某种运动。”正是在上述前提下得出他表示的宇宙基本定律:1)宇宙的能量是恒定的;2)宇宙的熵趋于极大。克劳修斯在1867年作的《关于机械热理论的第二定律》的讲演中,又进一步提出:“宇宙越是接近于其熵为一最大值的极限状态,它继续发生变化的可能性就越小;当它最后完全达到这个状态时,就不会再出现进一步的变化了,宇宙将永远处于一种惰性的死寂状态。”这就是著名的克劳修斯的“热寂说”的来历。

值得注意的是,开尔文和克劳修斯提出“热寂说”时是有所不同的,前者明确认为把热力学第二定律推广到宇宙是有条件限制的,也就是假设宇宙是一个“有限”的体系;后者并没有做这样一个限定,而是毫无条件地推广到整个宇宙。在对“热寂说”的提出者进行客观评价时,这种区别是要特别认真对待的。

除W·汤姆孙外,在克劳修斯前提出热寂说的还有赫姆尔霍兹,这一点很久以来似乎被人们忽视了,他在1854年的一次讲演中就谈到热力学第二定律意味着整个宇宙最终将处于温度均匀的状态,并且“自此以后,宇宙将陷入永恒的静止状态”,即热寂状态。

二 热寂说的社会影响

热寂说的提出,在社会上引起了巨大的反响,因为它是基于严谨的科学定律而预言的“世界末日”。这种世界末日的悲观思想造成了19世纪欧美所特有的悲观情绪,使很多人因此对社会进步感到悲观失望,以致不仅自然科学家关心,人文学者也同样关心。

美国历史学家亨利·亚当斯把它解释为19世纪所特有的低落情绪的原因,还把它与对社会进步的失望情绪相联系,正是这一观念给一些作家带来了一种对宇宙热死亡的忧郁心态。例如具有资产阶级自由思想的英国诗人斯温伯恩曾这样描述了热寂:

不论是星星还是太阳将不再升起,

到处是一片黑暗,

没有溪流的潺潺声,

没有声音,没有景色,

既没有冬天的落叶,

也没有春天的嫩芽,

没有白天,也没有劳动的欢乐,

在那永恒的黑夜里,

只没有尽头的梦境。

美国的物理学史家G·霍尔顿把这种没落情绪正确地归之于社会原因。他在《物理科学的概念和理论导论》一书中指出:“热寂说对于一些流行作家有一种不健康的吸引力,这些作家沉湎于席卷欧美社会某些部分的关于世界末日的悲观情绪。由于熵的增加意味着更大的无秩序的混乱,这也许就是对社会崩溃和环境衰退的一种解释!”

这样,热力学第二定律被视为堕落的渊薮。因为它断言,一切都不免从有序走向无序,从整齐走向混乱。甚至更有人延伸说,热力学第二定律表明人种将从坏变得更坏,最终都要灭绝。总之,在19世纪末,热力学第二定律和由它导出的热寂说,已成了社会声誉最坏的科学定律。

因此,从19世纪开始,就不断有人提出各种方案或假说来批判热寂说,试图证明热寂说只是一个佯谬,由此证明宇宙是不会热寂的。这些批判都十分令人钦佩,因为它们若成功了,就不仅拯救了物理学的名声,而且也“拯救了整个宇宙和人类”。

三 对热寂说的批判

长期以来,人们总以为宇宙基本上是静态的,而且在时间上既无始又无终。但按照热寂说的说法,似乎宇宙早就该处于热寂状态了。然而最使人不可理解的是,为什么现实宇宙至今并没有达到热寂状态?由于热寂说在感情上和理智上都给人以强烈的冲击,所以它问世不久,就遭到各方面的抨击。下面简要介绍对后世影响较大的两家之言以及比较流行的一些观点。

1。对后世影响较大的两个代表性说法

(1)“麦克斯韦妖”的提出。1871年,麦克斯韦(J。Maxwell)曾以“麦克斯韦妖”给热力学第二定律提出了一难题。他设想:一个容器分为A和B两部分,中间有一小孔,有一个小精灵能打开孔道,使快分子从A跑到B,慢分子从B跑到A,这样就在不消耗能量的情况下,使B温度升高,A温度下降。这样一来,热量自动从低温部分传向高温部分,系统的熵降低了,热力学第二定律受到了挑战。人们称这个小精灵为“麦克斯韦妖”。一百年来,“麦克斯韦妖”对许多物理学家一直有很大的诱惑力。麦克斯韦认为,只有当我们能够处理的只是大块的物体而无法看出或处理借以构成物体分离的分子时,热力学第二定律才是正确的,并由此提出应当对热力学第二定律的应用范围加以限制。然而1929年,匈牙利物理学家西拉德揭开了“麦克斯韦妖”之谜。他指出:麦克斯韦妖有获得和储存分子运动信息的能力,它靠信息来干预系统,使它逆着自然界的自发方向进行。1951年布里渊更明确指出,妖精要识别分子,它必须有一个温度与环境不同的微型光源去照亮分子,这就要输入能量,按现代的观点,信息就是负熵,正是麦克斯韦妖将负熵输给了系统,才降低了系统的总熵。麦克斯韦妖正是以此为代价,才获得了所需要的信息(即负熵)的这额外的熵的产生,补偿了系统里熵的减少,从而引起熵的增加。他由此断言妖精是不存在的。

(2)玻尔兹曼的质疑。1872年玻尔兹曼(L。Bo—ltzmann)也指出:热力学在局部范围内是正确的,但它不是绝对的规律。他首先赋予熵的增加以统计解释,按照这样解释热平衡态总是伴随有涨落现象,后者是不遵守热力学第二定律的。在宇宙的某些局部可以偶然地出现巨大的涨落,在那里熵没有增加,因此宇宙也就不可能产生热寂,甚至还在减少,因此宇宙也就不可能产生热寂。玻尔兹曼这种“涨落说”有一定的吸引力,但尚缺乏事实根据。天文学观测表明,至今没有任何有说服力的证据说明现在的宇宙是处在热平衡态并存在着上下“涨落”。而且从逻辑上看,玻尔兹曼的“涨落说”实际上是把宇宙“热寂”已经放在他的前提中了,因而他首先承认“涨落”是在平衡态附近发生的。而对于任何“涨落”,不论它有多大,最后必然会消失,重新回到平衡状态。尽管后来一些物理学家,如莱辛巴赫(H。Reihenbaeh)等发展了玻尔兹曼的思想,把时间增加的方向作为熵增加的方向,并进一步指出了存在着熵的涨落现象,但同样由于缺乏观测证据支持而最终被放弃。

2。恩格斯对热寂说的批判

由于“热寂说”涉及到宇宙未来和人类命运等重大问题,因而也引起了哲学界,尤其是马克思主义哲学的深刻关注,一百多年来,恩格斯对“热寂说”的批判产生了深远的影响。

“热寂说”刚刚提出,恩格斯就在1869年3月2日致马克思的信中指出,这种理论认为,世界愈来愈冷却,宇宙中的温度愈来愈平均化,因此,最后将出现一个一切生命都不能生存的时刻,整个世界将由一个围着一个转的冰冻的球体所组成。我现在预料神父们将抓住这种理论,把它当作唯物主义的最新成就,用来作为“必须设想有上帝存在”的论证,而这种论证实质上是与辩证唯物论背道而驰的。

恩格斯在其《自然辩证法》导言中,又从能量守恒与转化的观点出发,对热寂说也作了精辟的分析和批判。他指出:“散射到太空中去的热必须有可能以某种方法——阐明这种方法将是以后自然科学的课题一转变为另一种运动形态,在这种运动形态中它能够重新集结和活动起来。”恩格斯依据天文观测资料“新星之突然地闪现以及熟知的旧星的突然增加光亮”指出散射到太空中的热能有重新集结的可能,他坚持辩证自然观的正确性,因此他写道:“我们确信,物质在它的一切变化中永远是同一的,它的任何一个属性都决不会丧失,因此它在某个时候以铁的必然性毁灭自己在地球上的最高的花朵——思维着的精神,而在另外的某个地方和某个时候又一定以同一种铁的必然性把它重新产生出来。”

3。曾广为流行的其它观点

(1)熵增加原理只对孤立系统成立,目前我们没有任何根据说宇宙是这样的一个封闭的孤立系统。把在有限时空范围内得到的原理任意推广到整个宇宙是难以置信的。

(2)对整个宇宙而言,既存在着从有序向无序转化的过程,即熵增加过程,也存在着无序向有序转化的过程,即熵减少过程。因此,耗散结构理论认为宇宙在历史的长河中,熵只是在不断地增加的结论,是没有什么根据的。耗散结构理论认为,对于非孤立系统,熵的变化可以形式地分为两部分。一部分是由于系统内部的不可逆过程引起的,叫做熵产生,用dis表示。另一部分是由于系统和外界交换能量或物质而引起的,叫做熵流用des表示。所以整个系统的熵变化是ds=dis+d3s一个系统的熵产生永远不可能是负的,即总有diS≥0,对于孤立系统,由于des=0,所以ds=dis>0,这就是熵增加原理的表达式。

但对于非孤立系,视外界的作用不同,熵流des可正、可负。如果des<0,且|des|>dis,就会有ds=dis+des<0,这表示经过这样的过程,系统的熵会减小,系统就由原来的状态进入更加有序的状态。这就是说,对于一个封闭系统或开放系统存在着由无序向有序转化的可能。为此《 *** 》曾于1980年发表特稿,宣称普里高津的耗散理论帮助人类解决了一项科学上最扰人的似是而非的问题。然而,尽管这种理论具有很广的应用范围,但对于整个宇宙来说,由于缺乏明确的物理图象和实验基础而不被天体物理学界所认可。

(3)熵增加原理的严格表述是:“一个热力学系统从一个平衡态出发,经过绝热过程,到达另一个平衡态,它的熵不减少。”这里很重要的一点是,体系在过程的开始和过程的终了都处在平衡态。而对于宇宙来说,在我们知识所及的历史年代里,宇宙一直处于远离平衡状态之中。因此,说我们所及的历史年代中宇宙的熵不断增加是没有根据的。四热寂说的终结

多少年来我们总有这样的感觉,对已有的对热寂说的批判说服力不强,并没有真正解决问题。1948年,美籍俄裔物理学家伽莫夫(G。Gamow)和他的同事提出了一个“大爆炸”的宇宙理论,使热寂说的佯谬迎刃而解。

热寂说是以宇宙整体正在从非平衡趋于平衡的结论为前提的。然而大爆炸宇宙学的研究和观测表明,宇宙起源于150亿年前“原始火球”的一次大爆炸,大爆炸之后宇宙一直在膨胀。它不是趋于平衡,而是越来越趋于不平衡。按照熵增加原理,只对于每个静态的封闭体系,熵才有个固定的极大值Smax;对于膨胀着的系统,每一瞬时熵可能达到的极大值Smax一是与时俱增的。如果膨胀得足够快,系统不但不能每时每刻跟上过程以达到新的平衡,而且实际上熵值S的增长落后于Smax的增长,二者的差距越拉越长。虽然系统的熵不断增加,但它距平衡态却愈来愈远。我们的宇宙中发生的正是这种情况。

大爆炸宇宙理论得到了三个强有力的直接证据的支持,即哈勃红移、氦元素丰度和3K微波背景辐射。1929年,美国天文学家哈勃(E。Hubble)在研究了前人测量的星系距离资料后发现,这星系光谱线的颜色要比近星系的稍红一些,哈勃仔细的测量了这种红化,发现它呈系统性变化,而且,星系愈远,光谱线红移愈大,在进一步测定了许多星系光谱中特征谱线的位置后,哈勃证实了这个效应,并指出红移现象的产生是由于星系在退行而使光波变长的结果。由此,他总结出了著名的哈勃定律:星系退行的速度与距离成正比。从哈勃定律人们会很自然地得出宇宙在膨胀的推论。这个重大发现奠定了现代宇宙学——大爆炸理论的基础。

支持大爆炸宇宙论的第二个证据是宇宙中氦元素丰度的预言和测定。大爆炸发生一秒钟以后,宇宙是由极高温的基本粒子组成的“羹汤”,这时整个宇宙处于均匀的热平衡态。随着宇宙的膨胀和降温,其中的一些粒子逐次与其余部分粒子脱耦。此时产生的核反应使中子和质子聚合在一起,形成氦核,余下的核子(没有聚合的质子)自然就形成了氢核。精确的理论计算表明,当时应有23。6%的物质质量聚合成了氦核,英国皇家格林威治天文台对众多星系中原始星云的发射光谱进行观测的结果表明,宇宙中氦的实际丰度为23。5%。这一结果与大爆炸的理论预言极为相符。

支持大爆炸理论的第三个证据是3K微波背景辐射的发现。大爆炸理论预言,现在的宇宙中应该存在着一种来自宇宙早期的均匀的、各向同性的微波背景辐射,它是宇宙早期的遗迹,频谱应该符合普朗克黑体辐射公式,温度约为3K。1965年这一预言被射电天文学家彭齐亚斯(A。Penjias)和威尔逊(R。Wilson)在宇宙观测中证实,此后亦为众多科学家进一步证实。这一结果表明,宇宙早期曾一度处于平衡态,处处都有相同的温度,而且物质也是相当均匀的,非均匀性不超过10——5,大爆炸之后,宇宙才逐渐偏离热平衡态,而今天宇宙中物质分布的不均匀性已高达10—103。

另一方面,宇宙膨胀的原因是由于引力的作用。有引力作用的热力学与无引力作用的热力学得出的结论完全不同。在不考虑引力的经典热力学中,加热则体系升温,冷却则体系降温,热容量是正值。而在一个自引力体系中情况则刚好相反,加热则体系变冷,放热则体系升温,热容量是负值。而负热容物体的存在对于热力学来说具有根本性的影响。在一个体系中,如果同时存在着正热容物体和负热容物体,那么这个体系就具有极大的不稳定性。稍有扰动,平衡就会彻底遭到破坏而产生温差。因此,只要有引力体系存在,原则上就不存在稳定的热平衡,而宇宙间的天体或天体系统大多数正是这种引力系统。尽管自引力系统中熵是增加的,但由于没有热平衡,因而熵的增加是无止境的,永远没有极大值。

因此,“热平衡的存在对整个热力学是至关重要的,热平衡是热力学的出发点,而对于引力起作用的体系,实际上不存在热力学意义上的热平衡态,而是不稳定的状态。”这种现象在静态宇宙模型中是不可能发生的,也是开尔文和克劳修斯等人没有料想到的。

总之,热寂说的要害在于未考虑宇宙的膨胀和引力效应。随着宇宙的膨胀,辐射与粒子温度下降速度的不同,即使原来温度相同的系统也会因为辐射与粒子温度下降速度不同而形成温度差,这同热力学第二定律的结论不同。此外,在宇宙系统中,引力起着重大作用,前苏联理论物理学家朗道认为当考虑宇宙的大区域时,引力起了重要作用,涉及范围愈大,引力的作用就愈大。在一定范围内,会出现弥散物质的聚集现象,宇宙中的星系很可能就是这样形成的。这是与熵增加原理不同的物理过程。因此,考虑到宇宙的膨胀及引力效应,宇宙热寂是不可能实现的。

当然,今天的宇宙观尚不能预卜宇宙的最终结局,但这些未尽之页已不属于热寂说,而是新的一章了。

浅析《最后的问题》

时间倏忽而过,近来混乱人事颇多,故而写些纯净之事。

前几天阅读了阿西莫夫的经典短片科幻小说——《最后的问题》(1956),不得不为之精妙的构思赞叹。建议读者在阅读本文之前先阅读小说原文。

译文链接

小说是基于“热寂说”创作的。那么什么是“热寂”呢?首先来回顾一下“熵”的知识。

从能量角度来看,熵增加,系统的总能量不变,但其中可用部分减少。从统计学角度来看,系统总是自发的趋于从有序变为无序,维持有序需要消耗能量。薛定谔将之推广到生命体系中,认为生命(生物是开放系统)是高度有序的,生命的活力体现在能从环境中吸收“负熵”,用以抵抗自身的熵增,抵抗能力逐渐减弱最终导致平衡的无序状态,即死亡。

“热寂说”则是把“孤立系统中熵恒增”的理论向全宇宙做终极推广得出的,是19世纪中叶提出的对宇宙最终命运的一种猜想。

所以我们看到小说尾声,千亿年后宇宙熵达到极大,陷入平衡的黑暗,人类走向终结。而由于文学加工,结局发生了大逆转,这正是该小说精华之处。

小说分成6段小故事,从较近的2061年一直到千亿年后生命消亡,每段故事较之前间隔更长的发展时间,故事发生的环境、人类的生存状态随之变化。每段都是为再次提出“最后的问题”,即“ 熵增的趋势能否发生逆转” , “宇宙是否可以避免归于死寂” ,然后不断进化的超级计算机始终回答:不知道。

每段故事环境的变化虽只是表象,却使读者更好的融入情节,随着每一段中不同历史时期的角色一次又一次的叩问,不断被勾起好奇,等待着终将到来的结局,期待着宇宙“最后的问题”将被如何解答。所以整篇文章的力量注定聚焦在结局上。

可贵的是,人类最后一个独立的灵魂消亡前,局势并没有得到逆转,没有英雄跳出来拯救人类。旧宇宙还是终结了,此后我们才迎来了最后的回答——只有这两句话:

新宇宙诞生的这一瞬间,作者实现了神学与科学的统一。 用神学给出无法给出的“最后的回答”,是文学演绎的胜利,也是参照古典科学家(如牛顿)在无法解释问题时求助神学的旧例。

最终,人类制造的超级计算机在最后的人类灵魂融入之后才“收集完全部信息,进化为神,开创了新的宇宙(推测其由于存于更高维空间中故可继续工作,英语原文“hyperspace”)。这里有意思的是,此时神是人造的,又超越人造,接下来神可能还会造人,那么 究竟是先有神还是先有人呢?或许这是人类在完成自我救赎的一种表现? 这些我们都可以联想。

小说用短短万字就带我们一览人类未来史,并对如此宏大的主题——宇宙的最终命运——进行了一次诠释,使人深受启发。

在拓展“课外知识”之前,我们以斯蒂芬·威廉·霍金的话做结再好不过:

好了,到了最复杂的基础理论科普与探讨部分了,时间紧的读者可以先走了,其实我也不是很懂╮(╯_╰)╭。我们先增进一下对热力学第二定律和熵的认识。

可知对于一个孤立系统,其内部自发进行的与热相关的过程必然向熵增的方向进行。而孤立系统不受外界任何影响,当系统最终处于平衡态时,系统的熵取最大值。由此,熵增原理可作为不可逆过程的判据。可以证明熵增原理与克劳修斯表述及开尔文表述等价。

我们现在更了解了一些“热寂说”的基础。注意上文中“热寂说”解释及熵增原理,可知其建立在宇宙是一个孤立系统的基本假设上,该假设虽不能证伪,但也不能证实。百年来,随着人类对宇宙认识的加深,对“热寂说”的质疑和反驳始终没有停止,毕竟谁都想获得解答“最后的问题”的荣耀。然而似乎至今仍没有证据绝对击败该猜想。

有观点认为将地球上的热力学第二定律推广到全宇宙不妥,因为宇宙中的自引力系统具有负热容,没有稳定平衡态,即不适用热力学,熵可不断增加而没有最大值。

现代黑洞理论认为,黑洞可以向永动机一样先吸收后辐射能量,扰动宇宙能量的均衡。不过相关理论却也可以结合“热寂说”,比如认为孤立系统熵最大的情形是坍缩成黑洞的情形(因为黑洞所包含的不可分别的微观态数量)。黑洞又会通过霍金蒸发全部消失,然后就没有然后了。

还有想法认为,各种核聚变、核裂变、核衰变会使宇宙中所有物质变成比结合能最大的铁元素。。。

另,“热寂说”的延伸:现今宇宙来自于一次随机的量子涨落导致的大爆炸,在宇宙热寂后,还是一次随机的量子涨落导致大爆炸将诞生新的宇宙。

诸多的争议,皆由对宇宙本质的认识不同引起。当我们有一天解答了这“最后的问题”,真正理解了宇宙的发展演化命运,我们也就成为了上帝般的存在。

拓展阅读:

网易新闻:宇宙“缓慢死亡” 能量只有20亿年前一半

新浪博客:当热寂遇到黑洞——宇宙观下的熵学说

知乎:能否尽量通俗地解释什么叫做熵?

知乎:如何看待“热寂说”?宇宙会随着熵增终结于无序的热平衡么?

知乎:熵增是否和引力相矛盾?

知乎上的回答与评论只可作为争论看待,不保证严谨性。

怎样用假设方案证明地球是球体

“热寂说”是热力学第二定律的宇宙学推论,这一推论是否正确,引起了科学界和哲学界一百多年持续不断的争论。由于涉及到宇宙未来、人类命运等重大问题,因而它所波及和影响的范围已经远远超出了科学界和哲学界,成了近代史上一桩最令人懊恼的文化疑案。

一、“热寂说”是谁提出来的?

毫无疑问,“热寂说”是热力学第二定律的提出者提出的。热力学第二定律的提出者有两人,一位是英国的开尔文勋爵(Lord Kelvin)(即威廉·汤姆逊,W.Thomson),另一位是德国的克劳修斯(R.Clausius)。那么,谁是“热寂说”的提出者呢?国内学术界大多数人都认为,“热寂说”的提出者是克劳修斯。持此说的人一般都以恩格斯《自然辩证法》中反复提到的“克劳修斯的第二原理”的说法作为根据。另外一条根据则是,“熵”的概念是由克劳修斯提出来的,而“热寂说”是反映宇宙中熵不断增大的一种极限状态,所以“热寂说”是由克劳修斯提出的。

事实上,如果仔细考察一下有关“热寂说”的历史文献,我们就会发现以上说法有误,至少是不准确的。

1852年4月19日,开尔文在《爱丁堡皇家学会议事录》上发表的《论自然界中机械能散逸的普遍趋势》一文指出:“在现今,在物质世界中进行着使机械能散失的普遍趋势……在将要到来的一个有限时期内,除非采取或将采取某些目前世界上已知的并正在遵循的规律所不能接受的措施,否则地球必将开始不适合人类像目前这样居住下去”。[1]在这篇论文中,开尔文首次指出,从卡诺定理可以得出一个明显的结果,即当热从热的物体传到比较冷的物体时,就存在着机械能不可能完全恢复的耗散现象。在自然界中普遍存在的这种不可逆转的机械能的耗散趋向,必然造成宇宙中热量的不断增加。其直接后果是,地球必将“不适合人类像目前这样居住下去”。显然,开尔文在这里对宇宙热寂的思想作了充分的暗示。十年后,即1862年,开尔文发表《关于太阳热的可能寿命的历史考察》一文,该文曾被收入1902年出版的《科普讲演与致辞》一书。引人注目的是,在这篇文章中间,开尔文在“运动停止和整个物质宇宙的势能竭尽”这句话旁边加了一条附注:“见1852年4月19日爱丁堡皇家学会会议录”上他发表的“《论自然界中机械能散逸的普遍趋势》一文”。[2]这是开尔文提出“热寂说”的一条重要证据(当然,这一证据并不能排除开尔文与克劳修斯争夺提出“热寂说”优先权的可能性)。另一条重要证据则是赫尔姆霍兹(H.Helmholtz)在1854年发表的《论自然力的相互关系》一文。在该文中,赫尔姆霍兹指出,"我们必须钦佩汤姆逊的聪明才智,他在一篇长期为人熟知的文章中,唯一地说热、物体的体积和压力能够识别出威胁宇宙的后果,虽然那肯定会发生在无限时间之后,会永远死亡"。[3]虽然目前还不能最终肯定赫尔姆霍兹所提到的原文即是《论自然界中机械能散逸的普遍趋势》,但起码据此可以初步判断开尔文在1854年之前就已经提出了宇宙“热寂”问题。

阎康年根据自己对开尔文原作的考证认为,尽管在开尔文看来自然界中机械能耗散不可逆转的普遍趋势必然会造成宇宙中热量的不断增加,但是,宇宙中热量增加后是否会引起热平衡乃至“热寂”,开尔文却没有得出明确的推论。[4]

从以上分析可以看出,开尔文即使在1852年没有明确提出“热寂说”,至少也是提出了“热寂”思想的。

但是,开尔文传记的作者舍林(H.Sharlin)则认为,开尔文提出“热寂说”的时间应从1862年算起,因为他是在《关于太阳热的可能寿命的历史考察》这篇论文中才提出了“一个不可避免的宇宙静止和死亡状态”。[5]开尔文原文如下:“热力学第二个伟大定律孕含着自然的某种不可逆作用原理,这个原理表明虽然机械能不可灭,却会有一种普遍的耗散趋向,这种耗散在物质的宇宙中会造成热量逐渐增加和扩散,以及势的枯竭。如果宇宙有限并服从现有的定律,那么结果将不可避免地出现宇宙静止和死亡状态。但是,对宇宙中的物质广延设想一个界限是不可能的……”([2],p.349~350)在这里,开尔文十分明确地提出了宇宙“热寂说”。但必须注意的是,从这段话可以清楚地看出,开尔文提出“热寂说”时是十分谨慎的,他做了一个基本假设--宇宙是有限的,在这个有限的系统里,热力学第二定律是正确的,宇宙才会不可避免地出现热寂状态。但是他又认为,把物质广延的宇宙看成是一个有限的体系是不可能的。因此,在开尔文的心中,他实际上并不能肯定热力学第二定律是否可以推广到他并不真正了解的整个宇宙,并由此得出宇宙“热寂说”的推论。

从文献上看,第二个提出“热寂说”的人才是克劳修斯。他于1865年4月24日在苏黎世自然科学家联合会上作了一篇题为《关于热动力理论主要方程各种应用的方便形式》的演讲,该文同年发表于德国《物理和化学年鉴》。克劳修斯在这篇文章中第一次引进了“熵”的概念,证明了熵在绝热过程中的增加,并将热力学定律表述为“宇宙的能量保持不变,宇宙的熵趋于极大值”这样两个宇宙的基本定律。他指出,当宇宙中的一切状态改变都向着一个方向时,全宇宙必然要不断地趋近于一个极限状态。实际上,这里所说的“极限”状态就是指“宇宙热寂状态”。[6]

克劳修斯正式提出“热寂说”则是在1867年9月23日。当时,他在法兰克福举行的第41次德国自然科学家和医生的集会上作了一篇题为“关于热力学第二定律”的演说。在这篇轰动一时的著名演说中,克劳修斯明确指出:

“热总是从高温物体传到低温物体使得存在的温度差趋于消失,将逐渐地呈现越来越均匀的分布,而且在以太中的辐射热和物体所含的热之间也将出现一定的平衡。最后,物体分子的安排将接近于一定的状态,其中在相应的温度下总的离散度有最可能大的值。

我寻求把这整个过程用一个简单的定律表达出来,它将能确定地标志宇宙逐渐趋向的状态。我造了一个量,它与转化的关系跟能量与热和活的关系一样,即是,它等于所有的转化之和,这些转化是在使一个物体或是一群物体到达当前状态的过程中必然发生的。我叫这个量为熵。在一切正的转化大于负的转化的情形中,出现有熵增加。因此必然得出结论,在一切自然现象中熵的总值永远只能增加而不能减少,于是对到处不断进行的变化过程可以用下面的定律简短地表达:宇宙的熵趋向于极大。

宇宙越是接近于这个熵是极大的极限状态,进一步变化的能力就越小;如果最后完全达到了这个状态,那就任何进一步的变化都不会发生了,这时宇宙就会进入一个死寂的永恒状态。”[7]

实际上,克劳修斯在追述自己的思想时曾指出,他早在19世纪50年代初就已经有“能量退降”、“宇宙热寂”的思想了,只是他考虑到这个结论与当时很流行的关于热的观点有很大偏离而没有拿出来。

从以上可以看出,“热寂说”的思想产生于19世纪50年代初,几乎是伴随热力学第二定律的产生而产生的,开尔文和克劳修斯都进行过相关思考。然而最先提出"热寂说"的应该是开尔文而非克劳修斯。这一点,其实克劳修斯本人也是这么看的,他在1865年作的《关于热动力理论主要方程各种应用的方便形式》的演讲中就曾明确指出,“这个定律在宇宙中的应用,已得出一个结论,那是W.汤姆逊首先得出的,因此我才发表我所说的论文”。[8]

值得注意的是,开尔文和克劳修斯提出“热寂说”时是有所不同的,前者明确认为把热力学第二定律推广到宇宙是有条件限制的,也就是假设宇宙是一个“有限”的体系;后者并没有做这样一种限定,而是毫无条件地推广到了整个宇宙。在对“热寂说”的提出者进行客观评价时,这种区别是要特别认真对待的。不过,阎康年认为,克劳修斯把熵增原理推广到整个宇宙是出于数学上的考虑--他曾在1865年的《关于热动力理论主要方程各种应用的方便形式》论文中提到过这一点,只不过是在1867年的那篇著名演讲中“有意或无意地忽视或回避了在两年前提出的前提条件”。([4],p.182)由于这一问题超出了本文讨论的范围,在此不做赘述。

实际上,由于当时科学发展水平的限制,“热寂说”问题既无法用新的理论做出合理的解释,也无法用观测和验证做出做后判决,无论开尔文还是克劳修斯,也无论他们是否加上限定条件,都不能从科学上最终解决这个问题,这无疑就为后来的科学界与哲学界留下了一场旷日持久的争论。

二、科学解还是哲学解?

“热寂说”一经提出,即在科学界引起了轩然大波。

首先对“热寂说”提出诘难的是麦克斯韦(J.Maxwell)。1871年,他在《热理论》一书的末章《热力学第二定律的限制》中,设计了一个假想的存在物--“麦克斯韦妖”。麦克斯韦妖有极高的智能,可以追踪每个分子的行踪,并能辨别出它们各自的速度。这个设计方案如下:“我们知道,在一个温度均匀的充满空气的容器里的分子,其运动速度决不均匀,然而任意选取的任何大量分子的平均速度几乎是完全均匀的。现在让我们假定把这样一个容器分为两部分,A和B,在分界上有一个小孔,在设想一个能见到单个分子的存在物,打开或关闭那个小孔,使得只有快分子从A跑向B,而慢分子从B跑向A。这样,它就在不消耗功的情况下,B的温度提高,A的温度降低,而与热力学第二定律发生了矛盾"。[9]麦克斯韦认为,只有当我们能够处理的只是大块的物体而无法看出或处理借以构成物体分离的分子时,热力学第二定律才是正确的,并由此提出应当对热力学第二定律的应用范围加以限制。

尽管麦克斯韦既没有实现也没有提出任何实际的实验来检验他的假说,但这个“热力学第二定律的破坏者”却困扰了科学界一百多年,成为科学家诘难热力学第二定律并进而反对“热寂说”的著名假想实验。与麦克斯韦佯谬有关的还有后来洛歇密(Loschmid)提出的“可逆佯谬”和赛密罗(E.Zermelo)提出的“再出现佯谬”等都对单向不可逆性和热力学第二定律提出了挑战,实际上也是对“热寂说”提出了挑战。

在“热寂说”提出后的数十年中,对其构成最大挑战的科学假说是波尔兹曼(L.Boltzmann)的“涨落说”。波尔兹曼在对气体分子运动的研究中,最先对熵增加进行了统计解释。按照这种解释,热平衡态附近总存在着偶然的“涨落”现象,这种涨落现象并不遵从热力学第二定律。由此,波尔兹曼将气体分子运动论的观点推广到宇宙中,认为整个宇宙可以看成类似在气体状态的分子集团,围绕着整个宇宙的平衡状态则存在着巨大的“涨落”。即使在与整个广延的宇宙相比极其渺小的恒星系和银河系中,在短时期内也存在着这种相对的热平衡附近的“涨落”。按照这种假说,宇宙就必然会由平衡态返回到不平衡态。在这个区域,熵不但没有增加,而且是在减少。因此,宇宙也就不可能产生“热寂”。

波尔兹曼的“涨落说”曾广泛流传,许多人都把它作为反对“热寂说”的新发现。但天文学观测表明,至今没有任何有说服力的证据证明现在的宇宙是处在热平衡态并存在着上下“涨落”。由于缺乏事实依据,“涨落说”并没有真正从科学上解决宇宙“热寂”的问题。而且从逻辑上看,波尔兹曼的“涨落说”实际上是把宇宙“热寂”已经放在他的前提中了。因为他首先承认“涨落”是在平衡态附近发生的。而对于任何“涨落”,不论它有多大,最后必然会消失,重新回到平衡状态。尽管后来一些物理学家,如莱辛巴赫(H.Reihenbach)等发展了玻尔兹曼的思想,把时间增加的方向作为熵增加的方向,并进一步指出了宇宙中存在着熵的涨落现象,但由于同样缺乏观测证据支持而最终放弃。

20世纪60年代以来,以普里高津(I.Prigogine)为首的布鲁塞尔学派在研究非平衡态热力学和统计物理学的过程中,找到了开放系统由无序状态转变为有序状态的途径,提出了耗散结构理论。这一理论曾被一些人用来反对“热寂说”。

所谓“耗散结构”是指一种远离平衡态的有序结构。根据热力学第二定律,系统处在热平衡态就是有最大的混乱度,此时熵值达到最高,系统即出现所谓“热寂”。而有序结构的出现即意味着熵的降低,系统便可“起死回生”。这显然与热力学第二定律相悖。如生命的发生和物种的进化等,都是从低级到高级、从无序到有序的变化,是一个熵不断降低的过程。耗散结构理论解决了这个问题。它认为关键在于系统必须是开放的,而且系统内有序结构的产生要靠外界不断供给能量和物质以及负熵流。

耗散结构理论提出不久,一些人即将其推广到整个宇宙,认为宇宙是一个无限发展的开放系统,它远离平衡态。由于它不断吸取负熵流,因而在宇宙的一些区域内,熵不但没有增加反而有减少的趋势。因此宇宙不可能变成完全无序的“热寂”状态。《纽约时报》曾于1980年发表特稿,宣称普里高津的耗散结构理论帮助人类解决了一项科学上最扰人的似是而非的问题。[10]

然而,尽管这种理论具有很广的应用范围,但对于整个宇宙来说,由于缺乏明确的物理图像和实验基础而不被天体物理学界所认可。

一百多年来,许多杰出的科学家都为解决宇宙“热寂”这一世界性疑案呕心沥血,提出了各种宇宙模型和假说,其中有一些是没有“热寂”的模型,如托尔曼(P.Tolman)的相对论热力学中就已经没有了“热寂”,[11]但由于这些假说或模型存在着理论上不可克服的困难和缺乏宇宙观测事实的支持,最终都没有对“热寂说”构成威胁。这种情况一直延续到20世纪六、七十年代以后曾经沉寂的大爆炸宇宙论再度兴起。而这正是本文在最后要详细讨论的问题。

由于“热寂说”涉及到宇宙未来和人类命运等重大问题,因而也引起了哲学尤其是马克思主义哲学的深刻关注。一百多年来,恩格斯对“热寂说”的批判产生了深远的影响。在解释恩格斯反对热力学第二定律和“热寂说”的原因时,法国生物学家、哲学家莫诺(J.Monod)曾经指出,“恩格斯因为看到热力学第二定律将危及人类以及人类的思维活动是宇宙演化的必然产物这一带有必然性的规律,所以他感到非反对它和否定它不可。在《自然辩证法》的导言中,他就是这么说的;而且他还直接从这个命题转到了热情洋溢的宇宙论预言,预示着如果不是现在的人类,无论如何也有思维能力的精神将永恒地反复地再现”。[12]

实际上,“热寂说”刚刚提出,恩格斯就在1869年3月21日致马克思的信中指出,“这种理论认为,世界愈来愈冷却,宇宙中的温度愈来愈平均化,因此,最后将出现一个一切生命都不能生存的时刻,整个世界将由一个围着一个转的冰冻的球体所组成。我现在预料神父们将抓住这种理论,把它当作唯物主义的最新成就”,[13]用来作为“必须设想有上帝存在”的论证,而这种论证实质上是与辩证唯物论背道而驰的。1873年,恩格斯开始写作《自然辩证法》,在为该书准备资料的过程中,写下了许多批判“热寂说”的札记。由于一些原因,这些言论和札记当时并没有公开发表。50多年后,才随着《自然辩证法》的出版而为人所知。

恩格斯指出,“热寂说”由于断言宇宙中的一切运动都将最后转化为热,因而违反了辩证唯物主义的基本原理--运动不灭原理(它所对应的科学定律是能量守恒和转化定律,即热力学第一定律),“克劳修斯的第二原理等等,无论以什么形式提出来,都不外乎是说:能消失了,如果不是在量上,那也是在质上消失了。熵不可能用自然的方法消灭,但可以创造出来。宇宙钟必须上紧发条,然后才走动起来,一直达到平衡状态,而要使它从平衡状态再走动起来,那只有奇迹才行。上紧发条时所耗费的能消失了,至少是在质上消失了,而且只有靠外来的推动才能恢复”。[14]在这个分析的基础上,恩格斯联系科学史指出,“作为冷却的起点的最初的炽热状态自然就绝对无法解释,甚至无法理解,因此,就必须设想有上帝存在了。牛顿的第一推动就变成了第一炽热”。([13],p.267)恩格斯认为,这是历史的又一次重演,克劳修斯就这样像牛顿一样从形而上学滑向了唯心主义。

恩格斯以唯物辩证法的观点进一步指出,运动不灭的原理应该从量的不灭和质的不灭两方面来理解,只有这样运动才永远不会丧失其转变为它自身所能达到的各种不同运动形式的能力。因此,“现代自然科学必须从哲学那里采纳运动不灭的原理;它没有这个原理就不能继续存在”。([14],p.21)

恩格斯的这些论断实际上是辩证唯物主义思想在自然科学领域的直接应用,然而却引来了不少反对。最著名的莫过于莫诺的责难。他将唯物辩证法斥之为“万物有灵论的设想”的“翻版”,并说,“这种解释同科学不仅是风马牛不相及,而且是跟本不相容的。尽管如此,那些用了连篇废话大讲其‘空头理论’的辩证唯物主义者,还是经常企图用他们的想法来指导实验科学的发展。恩格斯本人虽然很熟悉他那个时代的科学,却以辩证法的名义拒绝了当时的两大发现:热力学第二定律和自然选择学说(尽管他很钦佩达尔文)”。([12],p.29)

然而,恩格斯事实上看到宇宙“热寂说”疑难的极其复杂性,认为仅仅依靠运动的数量是无限的(即不可穷尽的)这样一个一般的哲学命题,对解决这个问题是没有什么帮助的。因而,“只有指出了辐射到宇宙空间的热怎样变得可以重新利用,才能最终解决这个问题”,([14],p.261)并由此提出了如下的假说,“放射到太空中去的热一定有可能通过某种途径(指明这一途径,将是以后自然科学的课题)转变为另一种运动形式,在这种运动形式中,它能够重新集结和活动起来。因此,阻碍已死的太阳重新转化为炽热的星云的主要困难便消失承。”([14],p.23)

显然,恩格斯在这里明确指出了应该用哲学上的运动不灭原理和未来自然科学的发展来解决散失到太空中的热变成了什么这个问题,强调了哲学与科学的结合,既肯定了哲学的指导作用,又否定了哲学的代替作用。

也有观点认为,用运动不灭原理来拯救宇宙“热寂”在哲学上是“错误的”。错误的关键是混淆了运动和发展两个概念。运动有两种形式,一种是发展的运动,另一种是非发展的运动。发展的运动是非循环的和不可逆的,如生物的进化;非发展的运动则是循环的和可逆的,如钟摆的震荡。运动不灭原理只能保证宇宙将不停地运动,并不能保证这种运动是发展的。而“热寂”则是一种有运动而无发展的状态,它与运动不灭原理并不矛盾。所以,用运动不灭原理并不能推翻“热寂说”。“在热力学中,运动和发展二者的性质分别由热力学第一定律及第二定律所规定。热力学第一定律就是运动不灭原理。热力学第二定律则是关于发展方向的规律。利用第一定律并不能排除第二定律的热死结论。”[15]

那么,是否就此认为应对恩格斯关于“热寂说”的论述进行重新评价呢?这一问题超出了本文讨论的范围,笔者将另外著文进行阐述。

继恩格斯后,彭加勒(J.Poincaré)从科学方法论的角度对“热寂说”提出了尖锐的批评。1890年,彭加勒在《力学原理》一书中指出,任何力学模型只能局限在有限的系统内运动。在这个封闭的系统中,运动从有序开始,经过无序状态,最后必然再回到有序状态即初始状态。因此,与系统组态相联系的既定熵值,为了能回到初始状态就必然要减少。彭加勒认为,“热寂说”的出现是由于它的提出者们采用了当时流行的力学模型法造成的。因此,应在方法论上进行变革,要么承认热力学过程能回到初始状态,要么将热力学模型根本抛弃。

在批评“热寂说”的各种观点中,有两种观点影响最大,也最普遍。一种观点认为,热力学第二定律是从有限世界得来的,因而不能应用到无限的宇宙上。如丹皮尔(W.Dampier)在其《科学史及其与哲学和宗教的关系》一书中就认为,“把热力学原理应用于宇宙理论,其有效性是可疑的。把从这样有限的例证中推出来的结果,应用到宇宙上去,是没有道理的,即令过去利用这些结果去预言有限的独立的或等温体系的情况很有成效”。[16]另一种观点则直接否认宇宙是一个“孤立系”。实际上,这两种观点本身是相互关联的,都预先设定了宇宙是一个“无限的”“非孤立系”的前提。并且一再企图证明,宇宙是漫无边际的物质,各个部分都是相互联系的,宇宙之外还有宇宙,因而不存在孤立部分。何祚庥认为,这些论证都不能证明人们永远不能把无限宇宙当作一个统一整体来把握。[17]况且,今天的科学还不能证明宇宙是否无限。因此,这种说法并不能驳倒“热寂说”。另一方面,认为从孤立系中得出的第二定律不能推广到无限宇宙去的论证,从逻辑上看也是不严密的。小范围内的自然规律外推到大范围在逻辑上并不必然错误,科学史上就有大量这样外推的先例,如绝对零度概念、热力学第一定律以及模型方法等。既然能把热力学第一定律作为证明辩证唯物主义关于世界普遍联系的根本规律推广到整个宇宙,那么又为什么不能将第二定律作同样的推广呢?事实上,热力学第一定律也没有在无限的条件下做过实验。必须承认,任何实践活动都是在有限的范围内取得的,把由此得出的结论外推不但是经常的,而且是必需的,甚至在处理复杂对象时是最有效的方法。因此,这种说法从逻辑上看也是不能驳倒“热寂说”的。也有人认为,外推第二定律之所以受到如此之多的责难,首先是因为人们认为它否定了马克思主义关于发展的辩证法,其次是因为它本身“不合希望”性,是一条带有悲观色彩的定律,人们主观上希望它最好受到某种“制约”。[18]这种说法有点类似于莫诺的观点。

此外,中国和苏联也对“热寂说”进行过大规模的批判。由于这些争论基本上都是意识形态之争,而且这正是笔者另外一篇文章要讨论的问题,故本文不做进一步论述。

“热寂说”提出一百多年来,无论是在科学上还是在哲学上,各种争论此起彼伏,无休无止。有许多赞同者,也有许多反对者。他们都在孜孜不倦地寻求着这一疑难的最后答案。然而,最终都令无数英雄竞折腰。难怪大哲学家罗素(B.Russel)发出这样悲观的感叹,“一切时代的结晶,一切信仰,一切灵感,一切人类天才的光华,都注定要随太阳系的崩溃而毁灭。人类全部成就的神殿将不可避免地会被埋葬在崩溃宇宙的废墟之中--所有这一切,几乎如此之肯定,任何否定它们的哲学都毫无成功的希望。唯有相信这些事实真相,唯有在绝望面前不屈不挠,才能够安全地筑起灵魂的未来寄托”。[19]即使是像控制论之父维纳(N.Wiener)这样的科学巨匠,最终也“控制”不住自己沮丧的感情,几乎是在绝望中悲叹,“我们迟早会死去,很有可能,当世界走向统一的庞大的热平衡状态,那里不再发生任何真正新的东西时,我们周围的宇宙将由于热寂而死去,什么也没有留下……”([7],p.76)

那么,答案在哪里呢?科学解和哲学解,谁更真实、谁更符合人类的愿望呢?事实上,一个多世纪以来,各种哲学派别无休无止的争论亦无助于这一问题的最终解决。然而,科学仍然坚持走自己的道路。尽管人们承认哲学能给人以启发和提供思考的方向,但宇宙的未来只能依赖于科学自身的发展,任何超科学的回答都会把问题引向认识论的误区和歧途。俄国物理学家诺维科夫(I.Novikov)说了一句意味深长的话,“今天这样的争论已成为过去,是科学来确定世界真正结构的时候了”。[20]

三、“热寂说”“终结”了吗?

长期以来,对“热寂说”疑难的回答,无论从科学上看还是从哲学上看似乎都未能切中要害,缺乏说服力,因而一再爆发争论。然而20世纪六、七十年代以后,自从“大爆炸”宇宙模型逐渐得到天体物理学界公认以来,对“热寂说”疑难的讨论发生了根本性的转向,这一时期成了“热寂说”争论史上一个划时代的转折点。

在大量涌现的介绍大爆炸理论的文献中,特别令人瞩目的是,1994年10月,《科学美国人》杂志以“宇宙中的生命”为主题隆重推出了一期专刊,其中登载了四位著名科学家的综述,全面介绍了当代天体物理学界关于宇宙起源与演化问题的研究成果--大爆炸宇宙模型。该理论认为,宇宙大约是在100~200亿年以前,从高温高密的物质与能量的“大爆炸”而形成。随着宇宙的不断膨胀,其中的温度不断降低,物质密度也不断减小,逐渐衍生成众多的星系、星体、行星等,直至出现生命。宇宙大爆炸理论是20世纪科学研究的重大成就,是基于几十年的创新实验与理论研究的结果。因而获得了科学界的公认,并成为现代宇宙学的标准模型。

大爆炸宇宙理论得到了三个强有力的直接证据的支持,即哈勃红移、氦元素丰度和3K微波背景辐射。

1929年,美国天文学家哈勃(E.Hubble)在研究了前人测量的星系距离资料后发现,远星系光谱线的颜色要比近星系的稍红一些。哈勃仔细测量了这种红化,发现它呈系统性变化。而且,星系愈远,光谱线红移愈大。在进一步测定了许多星系光谱中特征谱线的位置后,哈勃证实了这个效应,并指出红移现象的产生是由于星系在退行而使光波变长的结果。由此,他总结出了著名的哈勃定律:星系退行的速度与距离成正比。从哈勃定律人们会很自然地得出宇宙在膨胀的推论。这个重大发现奠定了现代宇宙学--大爆炸理论的的基础。

支持大爆炸宇宙论的第二个证据是宇宙中氦元素丰度的预言和测定。大爆炸发生一秒钟以后,宇宙是由极高温的基本粒子组成的“羹汤”,这时整个宇宙处于均匀的热平衡态。随着宇宙的膨胀和降温,其中的一些粒子逐次与其余部分粒子脱耦。此时产生的核反应使中子和质子聚合在一起,形成氦核,余下的核子(没有聚合的质子)自然就形成了氢核。精确的理论计算表明,当时应有23.6%的物质质量聚合成了氦核。英国皇家格林尼治天文台对众多星系中原始星云的发射光谱进行观测的结果表明,宇宙中氦的实际丰度为23.5%。这一结果与大爆炸的理论预