色谱法的原理是待分离物质分子在固定相和流动相之间分配平衡的过程,不同的物质在两相之间的分配会不同,这使其随流动相运动速度各不相同,随着流动相的运动,混合物中的不同组分在固定相上相互分离。

根据物质的分离机制,又可以分为吸附色谱、分配色谱、离子交换色谱、凝胶色谱、亲和色谱等类别。

液相色谱原理

液相色谱仪是一款以用户为核心的智能化的色谱仪,具有常规HPLC的基本性能,并扩展了更多智能化的功能,能很好的满足用户的各类不同的应用要求,使用户能更加轻松的使用,并获得准确的分析数据。
一、原理:
高效液相色谱法的原理是在原始的经典色谱法基础上面引用气象色谐的理论,色谱柱则是用特殊的方式用小颗粒装填而成,造成的结果就是色谱柱的柱效远远高于原始的经典液相色谐,它柱子使用后还能具有高度灵敏度检测器。能够对流出来的分析物进行连续检测。
色谱仪是利用混合物各组分在固定相和流动相中溶解、分配或吸附等化学作用性能的差异,使各组分在作相对运动的两相中反复多次受到上述各作用力而达到相互分离。高效色谱仪在食品分析、环境分析、生命科学、医学检验和无机分析等领域得到广泛使用。-般来说,80%~85%的有机物原则上可采用高效液相色诸仪分析。

柱色谱法的原理是什么?

柱色谱法,又称层析法。是一种以分配平衡为机理的分配方法。柱色谱主要分为吸附柱色谱、分配柱色谱两种。
1. 吸附柱色谱原理
在一定条件下,硅胶与被分离物质之间产生作用,这种作用主要是物理和化学作用两种.物理作用来自于硅胶表表面与溶质分子之间的范德华力.化学作用主要是硅胶表面的硅羟基与待分离物质之间的氢键作用。色谱管为内径均匀、下端缩口的硬质玻璃管,下端用棉花或玻璃纤维塞住,管内装入吸附剂。吸附剂的颗粒应尽可能保持大小均匀,以保证良好的分离效果。除另有规定外,通常多采用直径为0.07~0.15mm的颗粒。色谱柱的大小,吸附剂的品种和用量,以及洗脱时的流速,均按各品种项下的规定。
在吸附柱色谱中,吸附剂是固定相,洗脱剂是流动相,相当于薄层色谱中的展开剂。吸附剂的基本原理与吸附薄层色谱相同,也是基于各组分与吸附剂间存在的吸附强弱差异,通过使之在柱色谱上反复进行吸附、解吸、再吸附、再解吸的过程而完成的。所不同的是,在进行柱色谱的过程中,混合样品一般是加在色谱柱的顶端,流动相从色谱柱顶端流经色谱柱,并不断地从柱中流出。由于混合样中的各组分与吸附剂的吸附作用强弱不同,因此各组分随流动相在柱中的移动速度也不同,最终导致各组分按顺序从色谱柱中流出。如果分步接收流出的洗脱液,便可达到混合物分离的目的。一般与吸附剂作用较弱的成分先流出,与吸附作用较强的成分后流出。
2. 分配柱色谱原理
方法和吸附柱色谱基本一致。装柱前,先将载体和固定液混合,然后分次移入色谱柱中并用带有平面的玻棒压紧;供试品可溶于固定液,混以少量载体,加在预制好的色谱柱上端。洗脱剂需先加固定液混合使之饱和,以避免洗脱过程中两相分配的改变。

高效液相色谱法的原理是什么?

高效液相色谱法的原理是以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测。

高效液相色谱法有“四高一广”的特点:

①高压:流动相为液体,流经色谱柱时,受到的阻力较大,为了能迅速通过色谱柱,必须对载液加高压。

②高速:分析速度快、载液流速快,较经典液体色谱法速度快得多,通常分析一个样品在15~30分钟,有些样品甚至在5分钟内即可完成,一般小于1小时。

③高效:分离效能高。可选择固定相和流动相以达到最佳分离效果,比工业精馏塔和气相色谱的分离效能高出许多倍。

④高灵敏度:紫外检测器可达0.01ng,进样量在μL数量级。

⑤应用范围广:百分之七十以上的有机化合物可用高效液相色谱分析,特别是高沸点、大分子、强极性、热稳定性差化合物的分离分析,显示出优势。

扩展资料

高效液相色谱还有色谱柱可反复使用、样品不被破坏、易回收等优点,但也有缺点,与气相色谱相比各有所长,相互补充。高效液相色谱的缺点是有“柱外效应”。

在从进样到检测器之间,除了柱子以外的任何死空间(进样器、柱接头、连接管和检测池等)中,如果流动相的流型有变化,被分离物质的任何扩散和滞留都会显著地导致色谱峰的加宽,柱效率降低。高效液相色谱检测器的灵敏度不及气相色谱。

空间排阻色谱法以凝胶(gel) 为固定相。它类似于分子筛的作用,但凝胶的孔径比分子筛要大得多,一般为数纳米到数百纳米。

溶质在两相之间不是靠其相互作用力的不同来进行分离,而是按分子大小进行分离。分离只与凝胶的孔径分布和溶质的流动力学体积或分子大小有关。试样进入色谱柱后,随流动相在凝胶外部间隙以及孔穴旁流过。

在试样中一些太大的分子不能进入胶孔而受到排阻,因此就直接通过柱子,首先在色谱图上出现,一些很小的分子可以进入所有胶孔并渗透到颗粒中,这些组分在柱上的保留值最大,在色谱图上最后出现。

参考资料来源:百度百科-高效液相色谱法

什么叫薄层色谱法?原理是什么?!!急!!

一、薄层色谱法

薄层色谱法是一种吸附薄层色谱分离法,它利用各成分对同一吸附剂吸附能力不同,使在流动相(溶剂)流过固定相(吸附剂)的过程中,连续的产生吸附、解吸附、再吸附、再解吸附,从而达到各成分的互相分离的目的。

二、薄层色谱法的基本原理

例如用硅胶和氧化铝作支持剂,其主要原理是吸附力与分配系数的不同,使混合物得以分离。当溶剂沿着吸附剂移动时,带着样品中的各组分一起移动,同时发生连续吸附与解吸作用以及反复分配作用。

由于各组分在溶剂中的溶解度不同,以及吸附剂对它们的吸附能力的差异,最终将混合物分离成一系列斑点。如作为标准的化合物在层析薄板上一起展开,则可以根据这些已知化合物的Rf值(后面介绍Rf值)对各斑点的组分进行鉴定,同时也可以进一步采用某些方法加以定量。

扩展资料:

薄层色谱法(TLC)薄层色谱具有选用范围广,重现性好等优点,常用于中药各种成分的鉴别。

用固定波长对薄层展开的各斑点作薄层扫描图谱比目测的层析图谱更为客观准确,因而具有更好的指纹鉴别意义。但由于受薄层板的质量和开放式层析系统等外界因素的影响,易引起一定的实验误差。

薄层色谱法与纸层析和纸层析比较TLC快速、分离效率高、灵敏度高、显色方法多样、图像易保存。

参考资料来源:百度百科——薄层色谱法

气相色谱原理是什么?

气相色谱原理是利用色谱柱先将混合物分离。

当样品由微量注射器“注射”进入进样器后,被载气携带进入填充柱或毛细管色谱柱。由于样品中各组分在色谱柱中的流动相(气相)和固定相(液相或固相)间分配或吸附系数的差异,在载气的冲洗下,各组分在两相间作反复多次分配使各组分在柱中得到分离。

然后用接在柱后的检测器根据组分的物理化学特性将各组分按顺序检测出来。检测器对每个组分所给出的信号,在记录仪上表现为一个个的峰,色谱峰上的极大值是定性分析的依据,而色谱峰所包罗的面积则取决于对应组分的含量,故峰面积是定量分析的依据。



气相色谱法的应用领域

气相色谱法是以气体为流动相的色谱分析方法,主要用于分离分析易挥发的物质。气相色谱法已成为极为重要的分离分析方法之一,在医药卫生、石油化工、环境监测、生物化学等领域得到广泛的应用。气相色谱仪具有高灵敏度、高效能、高选择性、分析速度快、所需试样量少等优点。

气相色谱仪将分析样品在进样口中气化后,由载气带入色谱柱,通过对欲检测混合物中组分有不同保留性能的色谱柱,使各组分分离,依次导入检测器,以得到各组分的检测信号。按照导入检测器的先后次序,经过对比,可以区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。

纸色谱法基本原理是什么 ? 呵呵

纸色谱法基本原理:

纸纤维为载体,吸着在其上的水为固定相,属于正相分配色谱,依据分配系数的不同而达到分离,极性或亲水性强的组分,K大,Rf值小,极性弱或亲脂性强的组分,K小,Rf值大。

纸色谱法指的是把一种溶剂固定在固体的支持物上,由于滤纸纤维对水有较强的亲和力,一般能吸附其自身质量22%的水,其中,6%的水以氢键与纤维素牢固结合,这些水即称为固定相。

被水饱和的有机相 为流动相。当流动相从含有氨基酸样品的滤纸上流过时,氨基酸就在固定相与流动相之间连续进行分配。

扩展资料:


纸色谱法系以纸为载体,以纸上所含水分或其他物质为固定相,用展开剂进行展开的分配色谱。供试品经展开后,可用比移值(R<[f]>)表示其各组成成分的位置(比移值=原点中心至斑点中心的距离/原点中心至展开剂前沿的距离)。

但由于影响比移值的因素较多,因而一般采用在相同实验条件下与对照物质对比以确定其异同。作为药品的鉴别时,供试品在色谱中所显主斑点的位置与颜色(或荧光),应与对照品在色谱中所
显的主斑点相同。

作为药品的纯度检查时,可取一定量的供试品,经展开后,按各药品项下的规定,检视其所显杂质斑点的个数或呈色(或荧光)的强度。作为药品的含量测定时,将主色谱斑点剪下洗脱后,再用适宜的方法测定。

参考资料来源:百度百科-纸色谱法

高效液相色谱原理

液相色谱仪是一款以用户为核心的智能化的色谱仪,具有常规HPLC的基本性能,并扩展了更多智能化的功能,能很好的满足用户的各类不同的应用要求,使用户能更加轻松的使用,并获得准确的分析数据。
一、原理:
高效液相色谱法的原理是在原始的经典色谱法基础上面引用气象色谐的理论,色谱柱则是用特殊的方式用小颗粒装填而成,造成的结果就是色谱柱的柱效远远高于原始的经典液相色谐,它柱子使用后还能具有高度灵敏度检测器。能够对流出来的分析物进行连续检测。
色谱仪是利用混合物各组分在固定相和流动相中溶解、分配或吸附等化学作用性能的差异,使各组分在作相对运动的两相中反复多次受到上述各作用力而达到相互分离。高效色谱仪在食品分析、环境分析、生命科学、医学检验和无机分析等领域得到广泛使用。-般来说,80%~85%的有机物原则上可采用高效液相色诸仪分析。

气相色谱法的原理

气相色谱系统由盛在管柱内的吸附剂(表1) 或惰性固体上涂着液体的固定相和不断通过管柱的气体的流动相组成。将欲分离、分析的样品从管柱一端加入后,由于固定相对样品中各组分吸附或溶解能力不同,即各组分在固定相和流动相之间的分配系数有差别,当组分在两相中反复多次进行分配并随移动相向前移动时,各组分沿管柱运动的速度就不同,分配系数小的组分被固定相滞留的时间短,能较快地从色谱柱末端流出。以各组分从柱末端流出的浓度 c对进样后的时间t作图,得到的图称为色谱图。当色谱过程为冲洗法方式时,色谱图如图1所示。从色谱图可知,组分在进样后至其最大浓度流出色谱柱时所需的保留时间tR,与组分通过色谱柱空间的时间tM,及组分在柱中被滞留的调整保留时间t'R之间的关系是:式中t'R与tM的比值表示组分在固定相比在移动相中滞留时间长多少倍,称为容量因子k。
从色谱图还可以看到从柱后流出的色谱峰不是矩形,而是一条近似高斯分布的曲线,这是由于组分在色谱柱中移动时,存在着涡流扩散、纵向扩散和传质阻力等因素,因而造成区域扩张。在色谱柱内固定相有两种存放方式,一种是柱内盛放颗粒状吸附剂,或盛放涂敷有固定液的惰性固体颗粒〔载体或称担体(表2)〕;另一种是把固定液涂敷或化学交联于毛细管柱的内壁。用前一种方法制备的色谱柱称为填充色谱柱,后一种方法制备的色谱柱称为毛细管色谱柱(或称开管柱)。
通常借用蒸馏法的塔片概念来表示色谱柱的效能,例如使用“相当于一个理论塔片的高度“H或“塔片数”n来表示柱效。
式中λ是与填充均匀性有关的因素称为填充不规则因子; γ是柱内填充物使得气体扩散路径弯曲的因素,称为弯曲因子;dp是填充物平均颗粒直径(即粒度);u是载气在柱温、柱压下的线速;Dg是组分在气相中的分子扩散系数;Dl是组分在液相的扩散系数;df是固定液的液膜厚度;dc是开管柱的内径。所以色谱柱的塔片数n=L/H,式中L为色谱柱长;n的数值可用给定的物质作实验由实验所得到的色谱图(图1)计算得到
式中ω┩为色谱峰的半高宽,由于气相色谱的组分在固定液中的分配等温线多为线性,如果进样量很小,得到的色谱峰流出曲线最初是用高斯正态分布来描述的,其数学表示式为:
实验和理论上都证明了物质的色谱峰形状是不对称的和曳尾的,若用指数衰减修正的高斯分布作为描述色谱峰形状的分布函数,则更为确切(公式1)
式中A表示峰面积;tG表示高斯峰的中心位置;σ表示高斯峰的标准方差;τ表示指数衰减函数的时间常数;t′为积分变量。
上面曾经指出,两组分的分配系数必须有差异,其色谱峰才能被分开。有了差异,分离时所需的柱效n也就不相同所以要判别两色谱峰分离的情况(图2),气相色谱法还需要采用色谱柱总分离效能指标R(公式2)
n与R的关系为(公式3)
式中α′是组分相对保留值;α是组分校正相对保留值。从上式可知,选择适宜固定液和具有给定塔片数的色谱柱后,应该通过改变色谱柱温来调节α′值,从而满足将两组分分离至给定R值的分离程度。

简要说明气相色谱分析的基本原理。

气相色谱分析的基本原理:
气相色谱分析是使混合物中各组分在两相间进行分配,其中一相是不动的(固定相),另一相(流动相)携带混合物流过此固定相,与固定相发生作用,在同一推动力下,不同组分在固定相中滞留的时间不同,依次从固定相中流出,又称色层法或者层析法。,组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。
气相色谱法(gas chromatography 简称GC)是色谱法的一种。色谱法中有两个相,一个相是流动相,另一个相是固定相。如果用液体作流动相,就叫液相色谱,用气体作流动相,就叫气相色谱。
气相色谱法由于所用的固定相不同,可以分为两种,用固体吸附剂作固定相的叫气固色谱,用涂有固定液的单体作固定相的叫气液色谱。
按色谱分离原理来分,气相色谱法亦可分为吸附色谱和分配色谱两类,在气固色谱中,固定相为吸附剂,气固色谱属于吸附色谱,气液色谱属于分配色谱。
按色谱操作形式来分,气相色谱属于柱色谱,根据所使用的色谱柱粗细不同,可分为一般填充柱和毛细管柱两类。一般填充柱是将固定相装在一根玻璃或金属的管中,管内径为2~6毫米。毛细管柱则又可分为空心毛细管柱和填充毛细管柱两种。空心毛细管柱是将固定液直接涂在内径只有0.1~0.5毫米的玻璃或金属毛细管的内壁上,填充毛细管柱是近几年才发展起来的,它是将某些多孔性固体颗粒装入厚壁玻管中,然后加热拉制成毛细管,一般内径为0.25~0.5毫米。
在实际工作中,气相色谱法是以气液色谱为主。

色谱法的分离原理是什么

GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离,待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大并记录下来时,就是气相色谱图了。
说的形象点,就像许多人在一条跑道,总有跑的快慢之分,快的就先出来,慢的就后到。