人工智能,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思
人工智能主要是学什么的?
要了解人工智能学什么内容,需要首先了解人工智能是什么:
1、人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的 科技 产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
2、人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
那么,人工智能学什么内容呢?
目前人工智能专业的学习内容主要包括: 机器学习、人工智能导论(搜索法等)、图像识别、生物演化论、自然语言处理、语义网、博弈论等。
需要的基础课程主要有,信号处理,线性代数,微积分,还有编程(有数据结构基础)。
从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。
想必大家也都知道,现在是一个逐渐智能化的 社会 ,随着 科技 的不断进步,越来越多的智能化产品开始进入到人们的生活中。而近些年,相信大家经常会听到人工智能四个字,人工智能这个行业比较吸引人,同时薪资待遇也较好。因此,很多的大学毕业生毕业之后都想要进入这个行业,但进入这个行业并不容易,如果是零基础的话更是需要学习很多东西才行。那么人工智能入门需要我们学习什么呢?
需要我们了解的一点是人工智能是一个综合学科,其本身涉及很多方面,比如神经网络、机器识别、机器视觉、机器人等,因此,我们想要学好整个人工智能是很不容易的。
首先我们需要一定的数学基础,如:高数、线性代数、概率论、统计学等等。很多人可能要问,我学习人工智能为什么要有数学基础呢?二者看似毫不相干,实则不然。线性代数能让我们了解如何将研究对象形象化,概率论能让我们懂得如何描述统计规律,此外还有许多其他数学科目,这些数学基础能让我们在学习人工智能的时候事半功倍。
然后我们需要的就是对算法的累积,比如人工神经网络、遗传算法等。人工智能的本身还是通过算法对生活中的事物进行计算模拟,最后做出相应操作的一种智能化工具,算法在其中扮演的角色非常重要,可以说是不可或缺的一部分。
最后需要掌握和学习的就是编程语言,毕竟算法的实现还是需要编程的,推荐学习的有Java以及Python。如果以后想往大数据方向发展,就学习Java,而Python可以说是学习人工智能所必须要掌握的一门编程语言。当然,只掌握一门编程语言是不够的,因为大多数机器人的仿真都是采用的混合编程模式,即采用多种编程软件及语言组合使用,在人工智能方面一般使用的较多的有汇编和C++,此外还有MATLAB、VC++等,总之一句话,编程是必不可少的一项技能,需要我们花费大量时间和精力去掌握。
人工智能现在发展得越来越快速,这得益于计算机科学的飞速发展。可以预料到,在未来,我们的生活中将随处可见人工智能的产品,而这些产品能为我们的生活带来很大的便利,而人工智能行业的未来发展前景也是十分光明的。所以,选择人工智能行业不会错,但正如文章开头所说,想入行,需要我们下足功夫,全面掌握这个行业所需要的技能才行。
1.数学基础:
高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析,博弈论;
2.算法积累:
神经网络,支持向量机,贝叶斯,决策树,逻辑回归,线性模型,聚类算法,遗传算法,估计方法,特征工程等;
3.编程语言:
至少掌握一门编程语言,越精通越好,毕竟算法的实现还是要编程的;
4.技术基础:
计算机原理,操作系统,程序设计语言,分布式系统,算法基础;
人工智能,即AI(ArtificialIntelligence),是一门包含计算机、控制论、信息论、神经生理学、心理学、语言学等综合学科。
该概念第一次在达茅斯顿学术会议上提出:人工智能是从计算机应用系统角度出发,研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以及延生人类智能科学。
核心课程
ArtificialIntelligence人工智能
MachineLearning机器学习
AdvancedOperatingSystems高级操作系统
AdvancedAlgorithmDesign高级算法设计
ComputationalComplexity计算复杂性
MathematicalAnalysis数学分析
AdvancedComputerGraphics高级计算机图形
AdvancedComputerNetworks高级计算机网络
就业方向参考
(1)搜索方向:百度、谷歌、微软、yahoo等(包括智能搜索、语音搜索、图片搜索、视频搜索等都是未来的方向)
(2)医学图像处理:医疗设备、医疗器械很多都会涉及到图像处理和成像,大型的公司有西门子、GE、飞利浦等。
(3)计算机视觉和模式识别方向:前面说过的指纹识别、人脸识别、虹膜识别等;还有一个大的方向是车牌识别;目前鉴于视频监控是一个热点问题,做跟踪和识别也不错;
(4)还有一些图像处理方面的人才需求的公司,如威盛、松下、索尼、三星等。
另外,AI方向的人才都是高 科技 型的,在待遇方面自然相对比较丰厚,所以很这个方向很有发展前途。
高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。今天的种种人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识。线性代数将研究对象形式化,概率论描述统计规律。
需要算法的积累:
人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:
比如C语言,MATLAB之类。毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
学习人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
一、 Python基础
二、 数学基础,其中包含微积分基础、线性代数以及概率统计
三、 各种框架,如Tensorflow等
四、 深度学习,其中包含机器学习基础、深度学习基础、卷积神经网络、循环神经网络、生成式对抗神经网络以及深度强化学习。
五、 商业项目实战,如MTCNN+CENTER LOSS 人脸侦测和人脸识别、YOLO V2 多目标多种类侦测、GLGAN 图像缺失部分补齐以及语言唤醒等。
熟练掌握C程序设计语言,以及C++、Java、Visual Basic中的一种程序设计语言
从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。
感谢题主提出的问题,非常荣幸能够做出回答。
1.人工智能是计算机科学的一个分支,它试图理解智能的本质,并产生一种新的智能机器,它能以类似人类智能的方式做出反应。该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统。自人工智能诞生以来,其理论和技术日益成熟,应用领域不断扩大。可以想象,人工智能带来的 科技 产品将成为未来人类智能的“容器”。人工智能可以模拟人类意识和思维的信息过程。人工智能不是人类智能,但它可以像人类一样思考,并可能超越人类智能。
2.人工智能是一门具有挑战性的科学,从事这项工作的人必须了解计算机知识、心理学和哲学。人工智能是一门非常广泛的科学,它由不同的领域组成,如机器学习、计算机视觉等。一般来说,人工智能研究的主要目标之一是使机器能够胜任一些通常需要人类智能的复杂任务。
那么,人工智能学到了什么?
目前,人工智能专业的学习内容主要包括:机器学习、人工智能导论(搜索方法等)。)、图像识别、生物进化理论、自然语言处理、语义网、博弈论等。
所需的基础课程主要是信号处理、线性代数、微积分和编程(有数据结构基础)。
从专业的角度来看,机器学习、图像识别和自然语言处理都是大方向,只要你精通其中的一个,你就已经非常强大了。所以不要看太多的内容,有些你只需要掌握,你需要选择一个方向来深入学习。事实上,严格来说,人工智能不难学,但不容易学。它需要一定的数学基础和一段时间的积累。
人工智能要学哪些东西
人工智能需要学的课程如下:
人工智能专业主要需要学:《人工智能、社会与人文》、《人工智能哲学基础与伦理》、《先进机器人控制》、《认知机器人》、,《机器人规划与学习》、《仿生机器人》、《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》、《人工智能的现代方法I》。
就业前景
前景很好,中国正在产业升级,工业机器人和人工智能方面都会是强烈的热点,而且正好是在3~5年以后的时间。难度,肯定高,要求你有创新的思维能力,高数中的微积分、数列等等必须得非常好,软件编程(基础的应用最广泛的语言:C/C++)必须得很好,微电子(数字电路、低频高频模拟电路、最主要的是嵌入式的编程能力)得学得很好。
还要有一定的机械设计能力(空间思维能力很重要)。这样的话,你就是人才,你就是中国未来5年以后急需的人工智能领域的人才。一门深入地钻研下去,你就是这个领域的专家甚至大师。
网友二:人工智能以计算机技术为基础,依赖算法和模仿人脑神经元结构,在大数据的统计下,利用高级计算机语言Python等x86或Linux架构系统下编写具有深度学习的,依赖图形海量AI的GPU组和CPU等架构上高精度传感器的智能的类似人脑思维的电子人工智慧。
人工智能是学什么的
人工智能是学:机器人、语音识别、图像识别、自然语言处理、机器学习和专家系统等。
人工智能专业的主要领域是:机器学习、人工智能导论、图像识别、生物演化论、自然语言处理、语义网、博弈论等。需要的前置课程主要有,信号处理,线性代数,微积分,还有编程(最好有数据结构基础)。
首先你需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法。当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM。
总之算法很多需要时间的积累。然后,需要掌握至少一门编程语言,毕竟算法的实现还是要编程的。如果深入到硬件的话,一些电类基础课必不可少。人工智能一般要到研究生才会去学,本科也就是蜻蜓点水看看而已,毕竟需要的基础课过于庞大。
学习原因:
1、编程可以训练孩子的计算思维,让学生能够系统地、有逻辑地分析和解决问题。逻辑思维培养得好可以帮助孩子加快学习进度,学习能力更强。
2、培养创新能力。人工智能编程以 scratch趣味教学帮助孩子更快入门,将软件和硬件结合起来,通过系统的、科学的课程内容设计,让孩子自己想法设法编游戏、制作小发明,提高孩子创新能力。
3、培养孩子的耐心。很多孩子上文化课没办法沉静下来听课,人工智能课程可以培养孩子的耐心,提高孩子专注度。
4、让学生更健康地使用电脑。在信息化时代,越来越多孩子沉迷于电子产品,堵不如疏,人工智能课程让孩子爱上编程、爱上动手,健康地使用电脑。
5、通过对人工智能的了解,让学生树立正确的科技观和价值观,培养学生所需具备信息意识、计算思维、数字化实践能力、信息社会责任这四大方面的信息技术核心素养。
人工智能学什么?
作为一名计算机专业的教育工作者,我来回答一下这个问题。
首先,人工智能专业属于计算机大类专业之一,虽然是新兴专业,但是由于当前人工智能领域的发展前景比较广阔,同时一系列人工智能技术也进入到了落地应用的阶段,所以当前人工智能专业也是热点专业之一。
人工智能专业有三个特点,其一是多学科交叉,涉及到计算机、数学、控制学、经济学、神经学、语言学等诸多学科,因此整体的知识量还是比较大的,其二是学习难度较大,人工智能本身的知识体系尚处在完善当中,很多领域还有待突破,其三是实践场景要求高。
基于这三个特点,要想在本科阶段有较好的学习效果,要有针对性的解决方案。针对于多学科交叉的情况,在大一期间一定要多做加法,尤其要重视编程语言的学习,基于编程语言来打开计算机技术大门,进而学习机器学习,而机器学习则被称为是打开人工智能技术大门的钥匙。
其三是要重视为自己营造一个较好的交流和实践场景,这对于学习效果有较大的影响,建议在大一、大二期间积极参加人工智能相关的课题组。在选择课题组的时候,要考虑到自己的兴趣爱好、课题周期、实践资源等因素,从这个角度来看,学校的科研资源对于人工智能专业的同学有较大的影响。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以私信我!
很荣幸曾经参加过一次江苏省人工智能论坛,论坛上认真聆听了行业大佬周志华教授的报告,受益匪浅,首先呢,如果你是在校大学生,想要以后从事人工智能专业相关工作,我这里给你分享下 南京大学人工智能学院院长周志华教授 曾经在论坛上分享的南京大学人工智能专业本科生教育培养大纲的相关课程。
首先是基础数学部分:
数学分析、高等数学、高等代数、概率论与数理统计、最优化方法、数理逻辑。
其次是学科基础课程:
人工智能导引、数据结构与算法分析、程序设计基础、人工智能程序设计、机器学习导论、知识表示与处理、模式识别与计算机视觉、自然语言处理、数字系统设计基础、操作系统。
专业方向课程:
泛函分析、数字信号处理、高级机器学习、计算方法、控制理论方法、机器人学导论、多智能体系统、分布式与并行计算。
专业选修课课程:
数学建模、矩阵计算、随机过程、组合数学。博弈论及其应用、时间序列分析、编译原理、随机算法、数据库概论。
这是南京大学人工智能学院本科生四年的课程安排,看起来课程非常多,但这是一个培养体系,现在国内只有南京大学针对人工智能专业开设了如此系统的培养方案,专业涉及人工智能的各个领域方向。学生可以根据自己的兴趣爱好,选择想要学习的领域方向。
如果你已经毕业,想要转行从事人工智能行业,那么下面这套课程可能比较适合你:
1.莫烦python教程(百度可搜): 莫烦python有很多专栏,可以学习到python基础、以及人工智能相关的软件框架教程,包括相关人工智能相关的一些实战小项目。
2.吴恩达机器学习(网易云课堂): 人工智能机器学习理论部分,非常适合零基础的小白学习
3.吴恩达卷积神经网络(网易云课堂): 人工智能深度学习理论部分,非常适合零基础的小白学习
4.李飞飞CS231n(网易云课堂): 人工智能深度学习和机器学习理论,适合有一定基础的学习者。
5.吴恩达cs229(blibli): 人工智能深度学习和机器学习理论,适合有一定基础的学习者。
这些基础课程学会了,可能就算是跨入了半个门槛,当然面试的时候还欠缺实战经验,于是你可以去kaggle或者天池参加一些比赛,有了这些比赛经验,简历上也算是多了一块实战经验,增加了你的面试成功率。最后,不要参加什么培训机构区培训,既花钱又学不到什么东西,最后毕业还会给你简历造假,得不偿失,我给你推荐的这些课程绝对比市面上99.99%的培训机构课程靠谱!
接下来文章会侧重在以下几方面
1、零基础如何进行人工智能的自学(以找工作为目的),包括路径规划,怎么学等等。
2、我的个人感悟,关于转行、工作、创业、希望能给大家一些启发。
3、好的学习资源分享
先说一下个人背景,一本,经济学毕业,上学时从未学过编程。我这里指的零基础指的是,没有编程基础、没有数学基础(数学需要一些基本的,如果没有,后续也会帮助大家的)。
刚毕业第一年时,迷茫,不知道做什么。
第一阶段:边工作边自学爬虫,失败
毕业一年后,觉得编程可能是自己想要的,所以开始自学编程。
最开始学的是爬虫,python语言。每天学6个小时,一周五到六天。学了4个月后,去面了五六家企业,没有成功。原因是爬虫的知识够,可是计算机的基础太薄弱。什么算法、计算机网络这些,统统没学。因为我当时是完全自学,没有人带,导致我也不知道要学这些。第一阶段,失败,说实话,有点气馁,那可是每天没日没夜的学习啊,最后却换来一场空。可是生活还得继续,怨天尤人有什么用。
第二阶段:边工作边自学人工智能,成功
面试失败后,考虑了要把编程基础学一下再去面试,还是学点别的。我的决定是学人工智能,当时对这个比较感兴趣。好了,又是学了半年多,每天学6个小时,一周6天。从机器学习学到深度学习再学回机器学习。面试,成功地去公司从事机器学习深度学习方面的基础工作。不过实力肯定没有那些编程出身,数学、统计出身的人强,所以很多时候也是边学边做,打打杂。
其实我说的很简单很轻松的样子,但其中的艰辛只有自己是最清楚。所以我很希望通过我未来经验学习的分享,帮助大家少走一些弯路。
第三阶段:自己干
现在,已从公司辞职,自己开发网站,做社群,开网店。就是觉得,其实编程也只是我的一个工具,这个人就是比较喜欢自己做点事情,编程挺累的,哈哈哈。如果大家有什么合作的好点子,也欢迎随时来找我哦。
十问十答:
1、零基础转行学编程可以吗?可以,要做好吃苦的准备。学习是个漫长的过程,你上班的话,能否保证一定时间的学习呢,这个是你要问自己的。我也是边工作边学习,不同的是,我工作很清闲,所以我基本可以在上班时间学习。如果你还在上学,恭喜你这是你最好的机会了。
2、该自学还是去培训班?我觉得自学就够了,培训班真是又贵又水。这是我进过培训班的朋友告诉我的。其实你工作之后会发现,很多东西都是要自学的。如果你连自学都没办法自学的话,你又怎么能工作。而且,自学的效率会更高,当然前提是路径不能错。
3、转行编程,就业率怎么样?说实话,如果你不是编程出身的,要转行编程其实是比较难的,毕竟人家4年的正统学习不是白学的。但这不意味着就没办法。找准目标,规划好路径,学习最必要的知识,这样就有机会。但是,请做好学完仍找不到工作的心理准备。
4、最理想的自学环境是怎么样的?清晰的学习路径+自学+交流讨论的环境+有人指导
5、人工智能零基础可以学吗?可以,但是比一般转行编程的要难,因为要自学的东西更多,要求的门槛也会更高。这个后续会着重讲到。
6、学人工智能需要数学吗?不要因为数学而望而切步,数学是需要的,但没有要求的高不可攀,通过必要的学习,是可以达到入门水准的。
7、以前没接触过编程,怎么办?可以学习python,这真的是一门对零基础的人来说很友好的语言了,其他的我不懂。
8、一般转行编程的周期要多久?按我跟我周边朋友的经验来看。一周5-6天,一天6小时学习时间,4-7个月,这应该是比较正常的。
9、我是怎么坚持下来的?期间有很多次想要放弃,有的时候是真的看不懂,也没人教,纯自学,安装个工具有什么时候就要安装半天,不多说,都是泪啊。你的欲望有多强烈,就能有多坚持。
10、现在学编程还来得及吗?永远都来得及,学编程不一定是为了好工作,它更是一个全新的世界,你会发现很多对自己有帮助的东西。就算以后你不做这个,我相信这个学习的过程也会有所收获。
这是我之后会写的文章的大概目录,大家可以参考一下。
以下系列是暂定的,一篇文章可能会写成好几篇。这个系列不仅仅以学习为目的,目的是为了达到机器学习的工作入门标准。并不简单,但努力就有可能。网上的教程我看了很多,路径大部分都没有错。只是我觉得第一,太贵,明明网上有很多免费的更好的资源。第二,练习的量远远不够达到能去找工作的标准。
目录:
零基础自学人工智能系列(1):机器学习的最佳学习路径规划(亲身经验)
零基础自学人工智能系列(2):机器学习的知识准备(数学与python,附学习资源)
零基础自学人工智能系列(3):机器学习的知识准备(数学篇详解)
零基础自学人工智能系列(4):机器学习的知识准备(python篇详解)
零基础自学人工智能系列(5):机器学习的理论学习规划(附资源)
零基础自学人工智能系列(6):深度学习的理论学习规划(附资源)
零基础自学人工智能系列(7):机器学习的实战操作(附资源和代码)
零基础自学人工智能系列(8):深度学习的实战操作(附资源和代码)
零基础自学人工智能系列(9):找工作篇,需加强的部分(类似数据结构与算法)
最后,我希望我能给大家树立一些信心。不管你现在处于什么水平,只要肯努力,什么都有可能的。
首先我们需要一定的数学基础,如:高数、线性代数、概率论、统计学等等。很多人可能要问,我学习人工智能为什么要有数学基础呢?二者看似毫不相干,实则不然。线性代数能让我们了解如何将研究对象形象化,概率论能让我们懂得如何描述统计规律,此外还有许多其他数学科目,这些数学基础能让我们在学习人工智能的时候事半功倍。
1、学习并掌握一些数学知识
高等数学是基础中的基础,一切理工科都需要这个打底,数据挖掘、人工智能、模式识别此类跟数据打交道的又尤其需要多元微积分运算基础
线性代数很重要,一般来说线性模型是你最先要考虑的模型,加上很可能要处理多维数据,你需要用线性代数来简洁清晰的描述问题,为分析求解奠定基础
概率论、数理统计、随机过程更是少不了,涉及数据的问题,不确定性几乎是不可避免的,引入随机变量顺理成章,相关理论、方法、模型非常丰富。很多机器学习的算法都是建立在概率论和统计学的基础上的,比如贝叶斯分类器、高斯隐马尔可夫链。
再就是优化理论与算法,除非你的问题是像二元一次方程求根那样有现成的公式,否则你将不得不面对各种看起来无解但是要解的问题,优化将是你的GPS为你指路
有以上这些知识打底,就可以开拔了,针对具体应用再补充相关的知识与理论,比如说一些我觉得有帮助的是数值计算、图论、拓扑,更理论一点的还有实/复分析、测度论,偏工程类一点的还有信号处理、数据结构。
2、掌握经典机器学习理论和算法
如果有时间可以为自己建立一个机器学习的知识图谱,并争取掌握每一个经典的机器学习理论和算法,我简单地总结如下:
1) 回归算法:常见的回归算法包括最小二乘法(OrdinaryLeast Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression),多元自适应回归样条(MultivariateAdaptive Regression Splines)以及本地散点平滑估计(Locally Estimated Scatterplot Smoothing);
2) 基于实例的算法:常见的算法包括 k-Nearest Neighbor(KNN), 学习矢量量化(Learning Vector Quantization, LVQ),以及自组织映射算法(Self-Organizing Map , SOM);
3) 基于正则化方法:常见的算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及弹性网络(Elastic Net);
4) 决策树学习:常见的算法包括:分类及回归树(ClassificationAnd Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 随机森林(Random Forest), 多元自适应回归样条(MARS)以及梯度推进机(Gradient Boosting Machine, GBM);
5) 基于贝叶斯方法:常见算法包括:朴素贝叶斯算法,平均单依赖估计(AveragedOne-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN);
6) 基于核的算法:常见的算法包括支持向量机(SupportVector Machine, SVM), 径向基函数(Radial Basis Function ,RBF), 以及线性判别分析(Linear Discriminate Analysis ,LDA)等;
7) 聚类算法:常见的聚类算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM);
8) 基于关联规则学习:常见算法包括 Apriori算法和Eclat算法等;
9) 人工神经网络:重要的人工神经网络算法包括:感知器神经网络(PerceptronNeural Network), 反向传递(Back Propagation), Hopfield网络,自组织映射(Self-OrganizingMap, SOM)。学习矢量量化(Learning Vector Quantization, LVQ);
10) 深度学习:常见的深度学习算法包括:受限波尔兹曼机(RestrictedBoltzmann Machine, RBN), Deep Belief Networks(DBN),卷积网络(Convolutional Network), 堆栈式自动编码器(Stacked Auto-encoders);
11) 降低维度的算法:常见的算法包括主成份分析(PrincipleComponent Analysis, PCA),偏最小二乘回归(Partial Least Square Regression,PLS), Sammon映射,多维尺度(Multi-Dimensional Scaling, MDS), 投影追踪(ProjectionPursuit)等;
12) 集成算法:常见的算法包括:Boosting, Bootstrapped Aggregation(Bagging),AdaBoost,堆叠泛化(Stacked Generalization, Blending),梯度推进机(GradientBoosting Machine, GBM),随机森林(Random Forest)。
3、掌握一种编程工具,比如Python
一方面Python是脚本语言,简便,拿个记事本就能写,写完拿控制台就能跑;另外,Python非常高效,效率比java、r、matlab高。matlab虽然包也多,但是效率是这四个里面最低的。
4、了解行业最新动态和研究成果,比如各大牛的经典论文、博客、读书笔记、微博微信等媒体资讯。
5、买一个GPU,找一个开源框架,自己多动手训练深度神经网络,多动手写写代码,多做一些与人工智能相关的项目。
6、选择自己感兴趣或者工作相关的一个领域深入下去
人工智能有很多方向,比如NLP、语音识别、计算机视觉等等,生命有限,必须得选一个方向深入的专研下去,这样才能成为人工智能领域的大牛,有所成就。
再回答第二个问题,人工智能到底是不是一项技术?
根据百度百科给的定义,人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的还能的理论、方法、技术及应用系统的一门新的技术科学。
百度百科关于人工智能的定义详解中说道:人工智能是计算机的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
综上,从定义上讲,人工智能是一项技术。
希望能帮到你。
人工智能需要学习的主要内容包括:数学基础课学科基础课,包括程序设计基础、数据结构、人工智能导论、计算机原理、 数字电路 、系统控制等;专业选修课,比如 神经网络 、深度学习以及认知科学、神经科学、计算金融、计算生物学、计算语言学等交叉课程。
一、人工智能专业学什么
1.认知与神经科学课程群
具体课程:认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程
2.人工智能伦理课程群
具体课程:《人工智能、 社会 与人文》、《人工智能哲学基础与伦理》
3.科学和工程课程群
新一代人工智能的发展需要脑科学、神经科学、认知心理学、信息科学等相关学科的实验科学家和理论科学家的共同努力,寻找人工智能的突破点,同时必须要以严谨的态度进行科学研究,让人工智能学科走在正确、 健康 的发展道路上。
4.先进机器人学课程群
具体课程:《先进机器人控制》、《认知机器人》、,《机器人规划与学习》、《仿生机器人》
5.人工智能平台与工具课程群
具体课程:《群体智能与自主系统》《无人驾驶技术与系统实现》《 游戏 设计与开发》《计算机图形学》《虚拟现实与增强现实》。
6.人工智能核心课程群
具体课程:《人工智能的现代方法I》《问题表达与求解》、《人工智能的现代方法II》《机器学习、自然语言处理、计算机视觉等》。
二、人工智能专业培养目标及要求
以培养掌握人工智能理论与工程技术的专门人才为目标,学习机器学习的理论和方法、深度学习框架、工具与实践平台、自然语言处理技术、语音处理与识别技术、视觉智能处理技术、国际人工智能专业领域最前沿的理论方法,培养人工智能专业技能和素养,构建解决科研和实际工程问题的专业思维、专业方法和专业嗅觉。
探索 实践适合中国高等人工智能人才培养的教学内容和教学方法,培养中国人工智能产业的应用型人才。
三、人工智能专业简介
人工智能专业是中国高校人计划设立的专业,旨在培养中国人工智能产业的应用型人才,推动人工智能一级学科建设。2018年4月,教育部在研究制定《高等学校引领人工智能创新行动计划》,并研究设立人工智能专业,进一步完善中国高校人工智能学科体系。2019年3月,教育部印发了《教育部关于公布2018年度普通高等学校本科专业备案和审批结果的通知》,根据通知,全国共有35所高校获首批「人工智能」新专业建设资格。
2020年3月3日,教育部公布2019年度普通高等学校本科专业备案和审批结果,“人工智能”专业成为热门。
人工智能是一个综合学科,其本身涉及很多方面,比如神经网络、机器识别、机器视觉、机器人等,因此,我们想要学好整个人工智能是很不容易的。
首先我们需要一定的数学基础,如:高数、线性代数、概率论、统计学等等。很多人可能要问,我学习人工智能为什么要有数学基础呢?二者看似毫不相干,实则不然。线性代数能让我们了解如何将研究对象形象化,概率论能让我们懂得如何描述统计规律,此外还有许多其他数学科目,这些数学基础能让我们在学习人工智能的时候事半功倍。
然后我们需要的就是对算法的累积,比如人工神经网络、遗传算法等。人工智能的本身还是通过算法对生活中的事物进行计算模拟,最后做出相应操作的一种智能化工具,算法在其中扮演的角色非常重要,可以说是不可或缺的一部分。
最后需要掌握和学习的就是编程语言,毕竟算法的实现还是需要编程的,推荐学习的有Java以及Python。如果以后想往大数据方向发展,就学习Java,而Python可以说是学习人工智能所必须要掌握的一门编程语言。当然,只掌握一门编程语言是不够的,因为大多数机器人的仿真都是采用的混合编程模式,即采用多种编程软件及语言组合使用,在人工智能方面一般使用的较多的有汇编和C++,此外还有MATLAB、VC++等,总之一句话,编程是必不可少的一项技能,需要我们花费大量时间和精力去掌握。
人工智能现在发展得越来越快速,这得益于计算机科学的飞速发展。可以预料到,在未来,我们的生活中将随处可见人工智能的产品,而这些产品能为我们的生活带来很大的便利,而人工智能行业的未来发展前景也是十分光明的。所以,选择人工智能行业不会错,但正如文章开头所说,想入行,需要我们下足功夫,全面掌握这个行业所需要的技能才行。
,首先呢,如果你是在校大学生,想要以后从事人工智能专业相关工作,我这里给你分享下 南京大学人工智能学院院长周志华教授 曾经在论坛上分享的南京大学人工智能专业本科生教育培养大纲的相关课程。
首先是基础数学部分:
人工智能亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。通过医学、神经科学、机器人学及统计学等的进步,有些预测则认为人类的无数职业也逐渐被人工智能取代。
人工智能学什么
院校专业:
基本学制:四年 | 招生对象: | 学历:中专 | 专业代码:080717T
培养目标
培养目标
专业定义 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。例如:人脸识别技术,语音识别技术、基于用户兴趣的智能算法推荐技术。 课程体系 《人工智能、社会与人文》、《人工智能哲学基础与伦理》、《先进机器人控制》、《认知机器人》、,《机器人规划与学习》、《仿生机器人》、《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》、《人工智能的现代方法I》、《问题表达与求解》、《人工智能的现代方法II》、《机器学习、自然语言处理、计算机视觉等》。 就业方向 实际应用:机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。
职业能力要求
职业能力要求
专业教学主要内容
专业教学主要内容
《人工智能、社会与人文》、《人工智能哲学基础与伦理》、《先进机器人控制》、《认知机器人》、,《机器人规划与学习》、《仿生机器人》、《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》、《人工智能的现代方法I》、《问题表达与求解》、《人工智能的现代方法II》、《机器学习、自然语言处理、计算机视觉等》
专业(技能)方向
专业(技能)方向
实际应用:机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。
职业资格证书举例
职业资格证书举例
继续学习专业举例
就业方向
就业方向
对应职业(岗位)
对应职业(岗位)
其他信息:人工智能学习的课程主要有:《人工智能、社会与人文》、《人工智能哲学基础与伦理》、《先进机器人控制》、《认知机器人》、《机器人规划与学习》、《仿生机器人》、《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》、《人工智能的现代方法I》、《问题表达与求解》、《人工智能的现代方法II》、《机器学习、自然语言处理、计算机视觉》。
材料补充:
人工智能(Artificial Intelligence)是中国普通高等学校本科专业。人工智能,是一个以计算机科学为基础,由计算机、心理学、哲学多学科交叉融合的交叉学科,研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统。
人工智能专业学些什么
1.基础数学知识:线性代数、概率论、统计学、图论;
2.基础计算机知识:操作系统、linux、网络、编译原理、数据结构、数据库;
3.编程语言基础:C/C++、Python、Java;
4.人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容;
5.工具基础知识:opencv、matlab、caffe等。
我们知道,目前国家也相继出台了一些扶持人工智能发展的政策,人工智能正处于发展的红利期,所以越早学习就越有就业优势。人工智能火起来就是这一两年的事儿,因此不管是上市企业,还是一些中小型企业,对于人工智能人才的需求量都非常大。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。目前来看,现在学习人工智能是一个很好的时机!
人工智能技术是学什么?
人工智能,即AI(ArTIficial Intelligence),是一门包含计算机、控制论、信息论、神经生理学、心理学、语言学等综合学科。人工智能是从计算机应用系统角度出发,研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以及延生人类智能科学。
人工智能专业就业方向主要包括科研机构(机器人研究所等)、软硬件开发人员、高校讲师等。在国内的话就业前景是比较好的,国内产业升级, IT行业的转型工业和机器人和智能机器人以及可穿戴设备的研发将来都是强烈的热点。人工智能目前是一个快速增长的领域,人才需求大,相比于其他技术岗位,竞争度偏低,薪资相对较高,因此,现在是进入人工智能领域的大好时机。
就业前景还是不错的,近两年,人工智能方面一直都是热点。人工智能专业作为近几年兴起的工科专业之一,虽然发展时间不久,但是绝对极具竞争力,无论是对以后就业还是科研研究,人工智能专业所能从事的行业都是有广泛代表性的。不过这个专业难度大,要求有创新的思维能力,高数必须学得非常好,需要掌握软件编程、微电子等,要有一定的机械设计能力、空间思维能力。只有深入钻研,才能成为领域的佼佼者。
一、人工智能技术应用专业学什么
该专业的学生主要学习的课程有:大学英语、线性代数I、概率论与数理统计I、计算思维I(C)、计算思维II(C++)、数据结构与算法(C++)、计算机网络与分布式处理、数据库原理与应用等等。
二、人工智能技术应用专业就业方向
1、AI硬件专家
在人工智能领域内的另外一种日益增长的蓝领工作,就是负责创建AI硬件(如GPU芯片)的工业操作工作,大科技公司目前已经采取了措施,来建立自己的专业芯片。随着人工智能芯片和硬件需求的不断增长,致力于生产这些专业产品的工业制造业工作岗位需求将会有所增长。
2、AI工程师
对于学习人工智能技术的人群来说,职业前景可谓一片光明。
人工智能需要学哪些课程 主要学什么
目前国内人工智能相关岗位的应届毕业生的起薪基本都在10k—20k之间,毕业三年后人工智能岗位的技术人员,平均月薪在25k以上,基本实现薪酬翻番,薪资水平、就业满意度都优于全国平均水平的专业。
人工智能要学哪些专业课程
数据科学与大数据专业和人工智能专业的必修基础课程方面一般包含大数据(人工智能)概论、Linux操作系统、Java语言编程、数据库原理与应用、数据结构、数学及统计类课程(高等数学、线性代数、概率论、数理统计)、大数据应用开发语言、Hadoop大数据技术、分布式数据库原理与应用、数据导入与预处理应用、数据挖掘技术与应用、大数据分析与内存计算等。选修的课程方面数据可视化技术、商务智能方法与应用、机器学习、人工智能技术与应用等。实践应用课程方面海量数据预处理实战、海量数据挖掘与可视化实战等。
数据科学与大数据技术与人工智能专业可从事的岗位有:分析类,分析工程师、算法工程师;研发类,架构工程师、开发工程师、运维工程师;管理类,产品经理、运营经理。
人工智能专业的就业方向人工智能可以说是一门高尖端学科,属于社会科学和自然科学的交叉,涉及了数学、心理学、神经生理学、信息论、计算机科学、哲学和认知科学、不定性论以及控制论。研究范畴包括自然语言处理、机器学习、神经网络、模式识别、智能搜索等。就业方向为:
科学研究
工程开发
计算机方向
软件工程
应用数学
电气自动化
通信
机械制造