在数学中,所谓方程的根是使方程左、右两边相等的未知数的取值。一元二次方程根和解不同,根可以是重根,而解一定是不同的,一元二次方程如果有2个不同根,又称有2个不同解。

所谓方程的解、方程的根都是使方程左、右两边相等的未知数的取值。

有一个问题,数学的,比如m是方程x²+x的一个根,是什么意思?为什么?有原因吗?

m是方程的一个根,说明代入m方程成立。也就是m满足方程。x是y的一根应该没有这种说法,y只是一个字母或变量,又不是方程。你可以说x是y=1的一个根,可以解出x=1不过如果是x,y,z,一般说x是f(x)=0(可以移项写成此形式)的一个根。

数学根号是什么概念

意思:在代数方程的解中出现两次的根。

所谓重根就是指方程(当然是指n次(n>=2))根,但是这些根可能有几个是一样的,就把这几个一样的叫做重根,有几个就叫做几重根。

例如f(x)=(x-1)^2则多项式的根是1就是二重根啊。因为f(x)=(x-1)(x-1)。

广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。

举例:

6×6=36±6就是36的平方根

5×5=25±5就是25的平方根

也就是说√36=±6,√25=±5

随着数学的发展,内在涵义又推广为用群结构或各种结构来代替科学现象中的各种关系。也就是说“代数”本质是个“代”字,通过研究各种抽象结构“代替”直接研究科学现象中的各种关系。

数学上的根以及增根是怎么回事?

根号是一个运算符号,就像+ — 这些。根号2就约等于1。44,就是说1。44的平方约等于2。根号4等于多少,你应该能算出来了吧``就是这个意思`(这里说的都是2次的根号,也就是开平方,3次就是开立方,4次5次````N次都没什么特殊说法了)

根在数学里的定义是什么?

根:代数方程式内未知数的值 增根:在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根。 如果一个分式方程的根能使此方程的公分母为零,那么这个根就是原方程的增根。 增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。

根号是什么意思 根号的由来是什么

方程的根

方程的根是:定义在一元方程中的使方程左、右两边的值相等的未知数的取值。

方程的根区别与方程的解:在多元方程中只定义了方程的解,未定义方程的根。

在一元方程中方程的解可能会受到某些实际条件的限制,如:一道关于每天生产多少零件的应用题的函数符合x^2-10x-24=0

方程的根:x1=12,x2=-2,

虽然x=-2符合方程的根的条件,但由于,考虑到实际应用,零件生产不可能是负数,所以,此时x2=-2就不是这个方程的解了,只能说是方程的根。

导语:数学是我们从很小的时候就开始学习的学科,它主要是通过各种运算得出的答案。我们都有学过数学中的根号,那么,大家知道根号是什么意思?根号的由来是什么?一起来看看。

根号是什么意思

根号的意思是用来表示对一个数或一个代数式进行开方运算的符号。若a=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用n√ ̄表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。

根号的书写在印刷体和手写体是一模一样的,这里只介绍手写体的书写规范。

1、写根号:

先在格子中间画向右上角的短斜线,然后笔画不断画右下中斜线,同样笔画不断画右上长斜线再在格子接近上方的地方根据自己的需要画一条长度适中的横线,不够再补足。(这里只重点介绍笔顺和写法,可以根据印刷体参考本条模仿写即可,不硬性要求)

2、写被开方的数或式子:

被开方的数或代数式写在符号左方v形部分的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界,若被开方的数或代数式过长,则上方一横必须延长确保覆盖下方的被开方数或代数式。

3、写开方数或者式子:

开n次方的n写在符号√ ̄的左边,n=2(平方根)时n可以忽略不写,但若是立方根(三次方根)、四次方根等,是必须书写。

开根号的计算方法

开根号就像求一个数的几次方的反义词一样,比如3的2次方是9,那么9开根号2就是3。

在中学阶段,涉及开平方的计算,一是查数学用表,一是利用计算器。而在解题时用的最多的是利用分解质因数来解决。如化简√1024,因为1024=2^10,所以。

√1024=2^5=32;又如√1256=√(2^3157)=2√(2157)=2√314

根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若a=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。

根号的由来

现代,我们都习以为常地使用根号(如√等),并感到它来既简洁又方便。

古时候,埃及人用记号“┌”表示平方根。印度人在开平方时,在被开方数的前面写上ka。阿拉伯人用 表示 。1840年前后,德国人用一个点“.”来表示平方根,两点“..”表示4次方根,三个点“...”表示立方根,比如,.3、..3、...3就分别表示3的平方根、4次方根、立方根。到十六世纪初,可能是书写快的缘故,小点上带了一条细长的尾巴,变成“ √ ̄”。1525年,路多尔夫在他的代数著作中,首先采用了根号,比如他写4是2,9是3,但是这种写法未得到普遍的认可与采纳。

与此同时,有人采用“根”字的拉丁文radix中第一个字母的大写R来表示开方运算,并且后面跟着拉丁文“平方”一字的第一个字母q,或“立方”的第一个字母c,来表示开的是多少次方。例如,中古有人写成Rq4352。数学家邦别利(1526~1572年)的符号可以写成Rc7pRq14╜,其中“╜”相当于括号,P(plus)相当于用的加号(那时候,连加减号“+”“-”还没有通用)。

直到十七世纪,法国数学家笛卡尔(1596~1650年)第一个使用了现今用的根号“√ ̄”。在一本书中,笛卡尔写道:“如果想求n的平方根,就写作 ,如果想求n的立方根,则写作 。”

有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√ ̄(不过,它比路多尔夫的根号多了一个小钩)就为现时根号形式。

立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号 的使用,比如25的立方根用 表示。以后,诸如√ ̄等等形式的根号渐渐使用开来。

由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数学家们集体智慧的结晶,而不是某一个人凭空臆造出来的,也绝不是从天上掉下来的。

按住ALT,然后按顺序按41420(小键盘)就可以打出电脑中的根号“√”。