从波动理论可知,波的振动方向相反相当于波多走了半个波长。入射光在光疏媒质中前进,遇到光密媒质界面时,在掠射或垂直入射2种情况下,在反射过程中产生半波损失,这只是对光的电场强度矢量的振动而言。如果入射光在光密媒质中前进,遇到光疏媒质的界面时,不产生半波损失。不论是掠射或垂直入射,折射光的振动方向相对于入射光的振动方向,永远不发生半波损失。

为什么会发生半波损失

半波损失是指波从波疏介质射向波密介质时反射过程中,反射波在离开反射点时的振动方向相对于入射波到达入射点时的振动相反的现象。

从波动理论可知,波的振动方向相反相当于波多走(或少走)了半个波长。入射光在光疏媒质中前进,遇到光密媒质界面时,在掠射或垂直入射2种情况下,在反射过程中产生半波损失,这只是对光的电场强度矢量的振动而言。

在洛埃镜实验中,如果将屏幕挪近与洛埃镜相接触。接触处为整个装置的对称中心,两束相干波的波程差应为零,但实验发现接触处不是0级明条纹,而是暗条纹。

这一事实说明洛埃镜实验中,光线自空气射向平面镜并在平面镜上反射后有了量值为π的位相突变,这也相当于光程差突变了半个波长。

扩展资料:

光的干涉现象是有关光的现象中的很重要的一部分,而只要涉及到光的干涉现象,半波损失就是一个不得不考虑的问题。

光在不同介质表面反射时,在入射点处,反射光相对于入射光来说,可能存在半波损失,半波损失可以通过直观的实验现象——干涉图样,来得到验证。

参考资料来源:百度百科--半波损失

为什么波从波疏介质进入波密介质会有半波损失?

波疏介质和波密介质是(波阻=波速x介质密度)的比较。如果波阻大,这种介质就是波密介质。半波损失,是指波从波疏介质射向波密介质时,反射光和入射光之间有相位突变π,对应于波长就是1/2

λ。

为什么机械波从波疏介质到波密介质会产生半波损失?

什么是反射波的半波损失现象 详细:

波的属性定律是用波的传播速度与波面等宏观量来描述的规律,然而,任何波动都是微观的媒质粒子振动的传播形成的,波的属性定律却不曾涉及媒质微观粒子的运动,如果从媒质粒子来讨论波动,那又可以得到怎样结果呢?

在《论机械横波中能量的传递》、《论机械横波中媒质质元所受的力》等文中已经详细论述了波动时均匀媒质中的媒质粒子的运动情况,所以本文只需讨论在媒质密度不同的分界面处波束入射点的媒质粒子的运动,因为反射与折射之后波动又回到均匀媒质中。

在均匀的媒质中,同一个媒质粒子的运动可能总在不断地变化着,但几乎在同一时刻媒质粒子的速度向其传播方向上的下一个媒质粒子进行了大小不变的传播,空间每一个媒质粒子似乎在媒质粒子密度产生的属性力的作用下而发生运动速度的改变,其实质却是波动的媒质粒子间的速度定向传播的结果。总之,对于同一个媒质粒子而言,无论其速度为多少,传播后一定能够使下一个粒子获得相同的速度,即媒质粒子的速度在传播过程中不会发生突变。

正是因为均匀媒质中的媒质粒子间的等速传播,并没有造成空间媒质粒子新的不平衡的分布,所以这时并不会因空间某个媒质粒子的振动而形成新的波源,媒质粒子还是传播着由原始振源产生的波动。

实际上,即使波动在均匀的媒质中传播,也可以把认为这是在两种密度不同的媒质中传播的特殊情况,在空间任意找一个平面都可以作为两种媒质的分界面。在这种情况下,分界面入射点处的媒质粒子的振动速度及相位大小均大小不变方向不变地从前一种媒质密度的媒质粒子传递给后一种媒质密度的媒质粒子,而且由于在两种媒质中波动的传播速度相等,根据波动属性定律可以判断波动的传播方向并没有发生改变。上一媒质粒子的运动动能也完全传递给下一媒质粒子,所以,波动在同种均匀的媒质中传播不会发生反射。

在自由的媒质中传播的波动,实际上媒质粒子间并没有直接传递振动速度,只是因为前振点的运动离开了平衡位置之后 ,在其位置上的局部空间形成了粒子密度不平衡的空间即密度梯度场空间,后面的媒质粒子在这种密度梯度场空间发生属性运动而具有速度。同样地因这些媒质粒子的运动再引起更远一些的局部空间产生密度梯度场空间,引起这些空间的媒质粒子又产生属性运动。这就是波动在媒质中的传播过程,也是媒质粒子的振动状态及其相位的传递过程。

如果波动的传播媒质的密度在空间有所变化,在空间形成较为明显的密度分界面,则该分界面就是波动波束的入射平面(或者折射平面),入射波束在前一种媒质密度中的传播至分界面到达入射点时,媒质粒子的振动同样地在入射点的局部空间引起了媒质粒子的密度梯度场,入射点局部空间应该分解为两部分,其中一部分在入射媒质之中,其中一部分在折射媒质之中。

在入射媒质密度与折射媒质密度相同的情况下,入射端的媒质振动动能全部都转化为折射端的媒质密度的不平衡状态,所以在入射端并没有多余的媒质粒子的累积而使入射端产生与粒子振动方向相反的额外密度梯度,在折射端由入射端媒质振动动能产生的媒质密度的不平衡引起了媒质粒子的属性运动,再以媒质粒子的动能形式还原出来,这时粒子动能与上一粒子的动能是完全相同的。

在入射媒质密度与折射媒质密度不相同的情况下,入射端的媒质振动动能不可能全部都转化为折射端的媒质密度的不平衡状态,这引起了入射端媒质粒在其运动方向上产生了多余了媒质粒子的堆积,从而使入射端局部空间产生与振动方向相反的额外密度梯度,使该局部空间的媒质粒子产生了与原来振动方向相反振动,这就是反射波波源的起因。正是在这种情况下,入射波束在入射点相当于一个波源,因其激发的反射波的媒质粒子的振动速度也就是反抗振源矢量,恰好与振源媒质的振动方向相反,这就是反射波相位与入射波相位反相的原因。在经典物理中,把这种反射波相位与入射波相位相反称之为半波损失,认为波在反射时损失了半个波长,这实际是不正确的,波在反射时并没有发生半个波长的损失,只是反射波是以入射波在入射点为波源而形成的波动,它与入射波已经不是同一列波动,它们当然反相。虽然入射端媒质粒子的动能没有完全转化为折射端的粒子密度的不平衡,但是折射端的媒质粒子还是同样地在密度梯度场中发生了与入射波同相的属性运动,只是这时媒质粒子动能小于入射端媒质粒子的动能。

由此可以知道,波动从一种媒质进入另一种媒质时,在分界面处波动的相位并没有发生改变,波动中无论是媒质前振点的振动速度还是振动相位都大小不变地向后振点进行了传播。只有波动发生反射时,媒质粒子振动相位才发生反相。

如果通过更详细的分析,还可以发现,媒质粒子的振动速度在两密度不同的媒质分界面的波动反射时都会发生反相,而是只有平行于分界面的速度分量才是反相反射,垂直于分界面的速度分量却是仍然按原振动方向反射。如所示,波束1是入射波速,2是反射波束,3是折射波束, 是入射波束的媒质粒子振动速度矢量, 是反射波束的媒质粒子的反抗波源矢量,实际上,垂直于分界面的矢量的方向相同,并没有反抗之意义,这主要是因为该速度矢量在运动过程直接进入了折射媒质之中,并没有引起入射媒质密度的额外不平衡,而依然传递着原来的不平衡状态,所以使媒质粒子产生了原来方向的属性运动。