整数:在数物体的时候,用来表示物体个数的数1、2、3、4、5等叫做自然数,也叫做正整数。自然数的个数是无限的,在自然数的前面加上负号得到负整数。负整数的个数也是无限的,0既不是负整数也不是正整数,把正整数、0、负整数统称为整数。

分数:分数表示一个数是另一个数的几分之几,或一个事件所有事件的比例。把单位一平均分成若干份,表示这样的一份或几份的数叫分数。分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母,分子小于分母是真分数,分子大于分母是假分数。

什么是整数和分数?

整数和分数统称为有理数。整数(integer)就是像-3,-2,-1,0,1,2,3,10等这样的数。整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。扩展资料有理数名词的来源:事实上,这是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”,于是有学者将它译成了“有理数”。但是,这个词来源于古希腊,其词根为ratio,就是“比值、比率”的意思。所以这个词的原意是:可写成两个整数之比形式的数。与之相对,“无理数”就是不能表示为两个整数之比的数,而并非没有道理。那么如果知道了有理数其实是“可写成两个整数之比形式的数”的话,对有理数的概念我们将很容易理解了。分数:5/2、5/3、5/4;整数又是特殊的分数,如5=5/1、1=5/5。

什么才算是整数,什么才算是分数?

整数可分为正整数、零与负整数,当一个数属于其中一类则被称为整数。分数是指一个正整数a和一个正整数b的不等于整数的比值。不为整数的数,就为分数。例如二分之一,八分之三,四分之一。

若一个数的末位是单偶数,则这个数能被2整除。若一个数的数字和能被3整除,则这个整数能被3整除。若一个数的末尾两位数能被4整除,则这个数能被4整除。若一个数的末位是0或5,则这个数能被5整除。若一个数能被2和3整除,则这个数能被6整除。

通过将分子放在分母上,但没有它们之间的条纹,形成分数。在梵文文献中,分数总是表示为一个整数的加和减。整数被写在一行上,其分数在两行的下一行写成。如果分数用小圆,则从整数中减去。如果没有这样的标志出现,就被理解为被添加。


扩展资料

数的家族就进一步扩大,包括实数和虚数两大类,并把加、减、乘、除的扩展到包括乘方和开方的,形成了数学中一个新的分支“代数”。代数进一步向两个方面发展,一是研究未知数更多的一次方程组,引进矩阵、向量、空间等符号和概念,形成“线性代数”。

若一个数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,同样重复之前的过程,直到能清楚判断为止。

参考资料来源:百度百科-整数

参考资料来源:百度百科-分数

什么统称为整数,什么统称为分数

1,(正整数和负整数 )统称为整数

整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。

2,(正分数和负分数 )统称为分数

分数是一个整数a和一个正整数b的不等于整数的比。当在日常英语中说话时,分数描述了一定大小的部分,例如半数,八分之五,四分之三。 分子和分母也用于不常见的分数,包括复合分数,复数分数和混合数字。分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。

扩展资料:

1,奇偶数:

整数中,能够被2整除的数,叫做偶数。不能被2整除的数则叫做奇数。即当n是整数时,偶数可表示为2n(n 为整数);奇数则可表示为2n+1(或2n-1)。

偶数包括正偶数(亦称双数)、负偶数和0。所有整数不是奇数,就是偶数。

在十进制里,我们可用看个位数的方式判断该数是奇数还是偶数:个位为1,3,5,7,9的数为奇数;个位为0,2,4,6,8的数为偶数。

2,分数注意事项:

①分母一定不能为0,因为分母相当于除数。否则等式无法成立,分子可以等于0,因为分子相当于被除数。相当于0除以任何一个数,不论分母是多少,答案都是0。

②分数中的分子或分母经过约分后不能出现无理数(如2的平方根),否则就不是分数。

参考资料:

百度百科-整数 百度百科-分数

整数和分数的区别?

整数(integer)就是像-3,-2,-1,0,1,2,3,10等这样的数。整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。

分数(来自拉丁语,“破碎”)代表整体的一部分,或更一般地,任何数量相等的部分。分数是一个整数a和一个正整数b的不等于整数的比。当在日常英语中说话时,分数描述了一定大小的部分,例如半数,八分之五,四分之三。 分子和分母也用于不常见的分数,包括复合分数,复数分数和混合数字。

如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。

扩展资料:

我们以0为界限,将整数分为三大类:

1. 正整数,即大于0的整数如,1,2,3······直到 n。

2. 零,既不是正整数,也不是负整数,它是介于正整数和负整数的数。

3. 负整数,即小于0的整数如,-1,-2,-3······直到-n。(n为正整数)

注:零和正整数统称自然数。整数也可分为奇数和偶数两类。

参考资料:

百度百科-整数

百度百科-分数

整数和分数的定义及性质

整数是正整数、零、负整数的集合。分数是一个整数a和一个正整数b的不等于整数的比。接下来分享整数和分数的概念和性质。

整数的定义和性质

1.定义:整数是正整数、零、负整数的集合。整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。

2.性质:若有限个整数之积为奇数,则其中每个整数都是奇数;若有限个整数之积为偶数,则这些整数中至少有一个是偶数;两个整数的和与差具有相同的奇偶性;一个整数的平方根若是整数,则两者具有相同的奇偶性。

分数的定义和性质

1.定义:当分子与分母同时乘或除以相同的数(0除外),分数值不会变化。因此,每一个分数都有无限个与其相等的分数。利用此性质,可进行约分与通分。

2.性质:分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。分数可以表述成一个除法算式:如二分之一等于1除以2。其中,1分子等于被除数,-分数线等于除号,2分母等于除数,而0.5分数值则等于商。分数可以表述成一个除法算式:如二分之一等于1除以2。其中,1分子等于被除数,-分数线等于除号,2分母等于除数,而0.5分数值则等于商。当分子与分母同时乘或除以相同的数(0除外),分数值不会变化。因此,每一个分数都有无限个与其相等的分数。利用此性质,可进行约分与通分。

整数和分数有什么区别

1、展现形式不同

整数就是像-3,-2,-1,0,1,2,3,10等这样的数。整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。

分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。

2、性质不同

整数中,能够被2整除的数,叫做偶数。不能被2整除的数则叫做奇数。即当n是整数时,偶数可表示为2n(n 为整数);奇数则可表示为2n+1(或2n-1)。偶数包括正偶数(亦称双数)、负偶数和0。所有整数不是奇数,就是偶数。

分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。分数可以表述成一个除法算式:如二分之一等于1除以2。其中,1 分子等于被除数,- 分数线等于除号,2 分母等于除数,而0.5分数值则等于商。

3、特征不同

整数中若一个数的末位是单偶数,则这个数能被2整除。若一个数的数字和能被3整除,则这个整数能被3整除。若一个数的末尾两位数能被4整除,则这个数能被4整除。若一个数的末位是0或5,则这个数能被5整除。

分数中分母一定不能为0,因为分母相当于除数。否则等式无法成立,分子可以等于0,因为分子相当于被除数。相当于0除以任何一个数,不论分母是多少,答案都是0。分数中的分子或分母经过约分后不能出现无理数(如2的平方根),否则就不是分数。

扩展资料:

整数的分类:

1、正整数,即大于0的整数如,1,2,3······直到n。

2、零,既不是正整数,也不是负整数,它是介于正整数和负整数的数。

3、负整数,即小于0的整数如,-1,-2,-3······直到-n。(n为正整数)

分数的基本性质:

分子与分母同时乘或除以一个相同的数(0除外),分数的大小不变。

参考资料:

百度百科—整数

百度百科—分数