在机器学习的上下文中,超参数是在开始学习过程之前设置值的参数,而不是通过训练得到的参数数据。通常情况下,需要对超参数进行优化,给学习机选择一组最优超参数,以提高学习的性能和效果。
超参数优化或模型选择是为学习算法选择一组最优超参数时的问题,通常目的是优化算法在独立数据集上的性能的度量。 通常使用交叉验证来估计这种泛化性能。超参数优化与实际的学习问题形成对比,这些问题通常也被转化为优化问题,但是优化了训练集上的损失函数。 实际上,学习算法学习可以很好地建模、重建输入的参数,而超参数优化则是
机器学习的超参数是什么
机器学习的超参数是什么
自从接触了机器学习后,在很多地方如书籍和文献中经常会看到有一类参数叫超参数(hyperparameter),其中提超参数最多的地方是在支持向量机(SVM)和深度学习(Deep Learning)中,比如支持向量机中的松弛因子:
上式中的C就是松弛因子,这个参数在支持向量机中不像参数W那样,可以通过优化学习得到。还有深度学习中的超参数,如学习率(Learning Rate),在训练深度网络时,这个学习率参数需要提前指定,比如最近设为0.09等。
那么问题来了,到底什么是超参数(hyperparameter)?在很多教材和文献中都是默认你理解超参数的定义的。如果不知道超参数的定义的话,有些文献中的话可能不好理解,比如在机器学习中,尤其是在支持向量机中,为什么有些文献要把数据集分割成训练集,验证集和测试集,而不是直接分割为训练集和测试集?只有理解了何谓超参数,才会明白某些文献中这样分割的道理。
什么是超参数呢?先来看一下超参数的学院风定义:在机器学习的上下文中,超参数是在开始学习过程之前设置值的参数,而不是通过训练得到的参数数据。通常情况下,需要对超参数进行优化,给学习机选择一组最优超参数,以提高学习的性能和效果。
超参数的通俗定义:超参数也是一种参数,它具有参数的特性,比如未知,也就是它不是一个已知常量。一种手工可配置的设置,需要为它根据已有或现有的经验指定“正确”的值,也就是人为为它设定一个值,它不是通过系统学习得到的。
下面主要看看超参数在机器学习中的定义及示例:
在机器学习的上下文中,超参数是在开始学习过程之前设置值的参数。 相反,其他参数的值通过训练得出。
超参数:
1. 定义关于模型的更高层次的概念,如复杂性或学习能力。
2. 不能直接从标准模型培训过程中的数据中学习,需要预先定义。
3. 可以通过设置不同的值,训练不同的模型和选择更好的测试值来决定
超参数的一些示例:
1. 树的数量或树的深度
2. 矩阵分解中潜在因素的数量
3. 学习率(多种模式)
4. 深层神经网络隐藏层数
5. k均值聚类中的簇数
什么是超参数
超参数的选择直接影响着支持向量机(SVM)的泛化性能和回归效验,是确保SVM优秀性能的关键。针对超参数穷举搜索方法的难点,从试验设计的角度,提出了正交设计超参选择方法,并分析了基于混合核函数(比单一核函数具有更好的收敛性和模型适应性)SVM各个超参数的取值范围,选定了每个参数的试验水平。通过考虑参数间的正交性和交互性,选取最优超参数组合下的SVM模型。应用该方法,对两种典型滑坡位移时序的SVM建模进行了超参数组合正交优化设计,获得了精度高且泛化性能良好的滑坡预测模型,其试验结果验证了方法的可靠性。正交设计超参选择方法较之其他超参选择法简单实用,其高时效的特点更有助于SVM在实践工程中的良好应用。