在升力曲线的前半段,就是还没有到达失速迎角的前半段升力随迎角增大而增大,而升力的本质是上下表面的压力差,而引起诱导阻力的原理你也明白就是因为压力差导致的下洗流,压力差越大下洗流越大,所以简而言之就是,迎角越大,升力越大,压力差越大下,洗流越大,诱导阻力越大。

影响飞机升力和阻力的因素是什么?

升力和阻力是飞机在与空气之间的相对运动中(相对气流)中产生的。影响升力和阻力的基本因素有:机翼在气流中的相对位置(迎角)、气流的速度和空气密度以及飞机本身的特点(飞机表面质量、机翼形状、机翼面积、副翼状态等)。

迎角对升力和阻力的影响——相对气流方向与翼弦所夹的角度叫迎角。在飞行速度等其他条件相同的情况下,得到最大升力的迎角,叫做临界迎角。在小于临界迎角范围内增大迎角,升力增大:超过临界迎角后,再增大迎角,升力反而减小。迎角增大,阻力也越大,迎角越大,阻力增加越多;超过临界迎角,阻力急剧增大。

飞行速度和空气密度对升力阻力的影响——飞行速度越大,升力、阻力越大。升力、阻力与飞行速度的平方成正比例,即速度增大到原来的2倍,升力和阻力增大到原来的4倍;速度增大到原来的3倍,升力和阻力也会增大到原来的9倍。空气密度大,空气动力大,升力和阻力自然也大。空气密度增大为原来的2倍,升力和阻力也增大为原来的2倍,即升力和阻力与空气密度成正比例。

机翼面积、形状和表面质量对升力、阻力的影响——机翼面积大,升力大,形成的空气阻力也大。升力和阻力都与机翼面积的大小成正比例。机翼形状对升力、阻力有很大影响,从机翼切面形状的相对厚度、最大厚度位置、机翼平面形状、襟翼的位置到机翼结冰都对升力、阻力影响较大。还有飞机表面光滑与否对摩擦阻力也会有影响,飞机表面相对光滑,阻力相对也会较小,反之则大。

飞机在飞行时的空气阻力一般分为3种:摩擦阻力、黏性压差阻力和诱导阻力。在跨音速和超音速飞行时还有个激波阻力。表面光滑度主要影响摩擦阻力,而摩擦阻力的大小与附面层类型有关,层流附面层产生的阻力大大小于紊流附面层,飞机表面越光滑,就越容易获得层流附面层,延缓层流向紊流的转捩。因此,提高飞机表面光滑度可以有效减小摩擦阻力,在跨音速、超音速时还可以减小激波阻力。

飞机空气动力学是这样划分速度范围的:M数小于0.4为低速,0.4到临界M数为亚音速,临界M数到1.4为跨音速,1.4到5为超音速,M数大于5为高超音速。跨音速阶段,随着局部激波的出现和发展,飞机焦点要急剧后移,也就是说,飞机的静安定度急剧增加,进而使飞机操纵性变得很差,甚至失去操纵余量。

知识点

空气动力学

空气动力学是力学的一个分支,它主要研究物体在同气体做相对运动情况下的受力特性、气体流动规律和伴随发生的物理化学变化。它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。

最早对空气动力学的研究,可以追溯到人类对鸟或弹丸在飞行时的受力和力的作用方式的种种猜测。17世纪后期,荷兰物理学家惠更斯首先估算出物体在空气中运动的阻力;1726年,牛顿应用力学原理和演绎方法得出:在空气中运动的物体所受的力,正比于物体运动速度的平方和物体的特征面积以及空气的密度。这一工作可以看做是空气动力学经典理论的开始。

提升仰角对翼型的升力和阻力的影响是什么?

升力和阻力是在飞机与空气之间的相对运动(相对气流)中产生的。影响升力和阻力的基本因素有:机翼在气流台的相对位置(迎角)、气流的速度和空气密度(空气的动压以及飞机本身的特点(飞机表面质量、机翼形状机翼面积、是否使用襟翼和前缘缝翼是否张开等)。
这些因素中,经常变化的有迎角、飞行速度和空气密度。飞行员主要是通过改变迎角和飞行速度来改变升力和阻力的。因此,本节主要分析迎角和飞行速度对升力、阻力的影响。至于由于使用襟翼和前缘缝翼等所引起的升力、阻力的变化,留在第五节再作分析。为便于分析问题,在分析一个因素时,假定其它因素不变。
一、迎角对升力和阻力的影响
(一)迎角
相对气流方向(飞机运动方向)与翼弦所夹的角度,叫迎角。相对气流方向指向机翼下表面,为正迎角;相对气流方向指向机翼上表面,为负迎角。飞行中,飞行员可通过前后移动驾驶盘来改变迎角的大小或者正负。飞行中经常使用的是正迎角。
飞行状态不同,迎角的正、负、大、小一般也不同。在水平飞行中,飞行员可根据机头的高低来判断迎角的大小,机头高,迎角大。机头低,迎角小。其它飞行状态,单凭机头的高低就很难判断迎角的大小和正负,只有根据迎角本身的含义去判断。例如,飞机俯冲中。机头虽然很低,但迎角并不为负的,气流仍从下表面吹向机翼,因此迎角是正的。又如在上升中,机头虽然比较高,但迎角却不一定很大,在改出上升时,若推杆过猛,也可能会出现负迎角。
(二)迎角对升力的影响
在飞行速度等其它条件相同的情况下,得到最大升力的迎角,叫做临界迎角。在小于临界迎角的范围内增大迎角,升力增大;超过临界边角后,再增大迎角,升力反而减小。
这是因为,迎角增大时,一方面在机翼上表面前部,流线更为弯曲,流管变细,流速加快,压力降低,吸力增大。与此同时,在机翼下表面,气流受到阻挡,流管变粗,流速减慢,压力增大,要使升力增大。但是,另一方面迎角增大时,由于机翼上表面最低压力点的压力降低。因此,后缘部分的压力比最低压力点的压力大得更多,于是在上表面后部的附面层中,空气向前倒流的趋势增强,气流分离点向前移动,涡流区扩大,就会破坏空气的平顺流动,从而使升力降低。在中、小迎角,增大迎角时,分离点前移缓慢,涡流区只占机翼后部的不大的一段范围,这对机翼表面空气的平顺流动影响不大,前一方面起着主要作用,因此,在小于临界迎角的范围内,迎角增大,升力是增大的。到临界迎角,升力达到最大。
超过临界迎角后,迎角再增大,则分离点迅速前移,涡流区迅速扩大,严重破坏空气的平顺流动,机翼上表面前段,流管变粗,流速减慢,吸力降低。从分离点到机翼后缘的涡流区内,压力大致相同,比大气压力稍小。在靠近后缘的一段范围内,吸力虽稍有增加,但很有限,补偿不了前段吸力的降低。所以,超过临界迎角以后,迎角再增大,升力反而减小。
改变迎角,不仅升力大小要发生变化,而且压力中心也要发生前后移动。迎角由小逐渐增大时,由于机翼上表面前段吸力增大,压力中心前移。超过临界迎角以后,机翼前段和中段吸力减小,而机翼后段吸力稍有增加,所以压力中心后移。
(三)迎角改变对机翼阻力的影响
在低速飞行时,机翼的阻力有:摩擦阻力、压差阻力和诱导阻力。
实验表明,迎角增大,摩擦阻力一般变化不大。
迎角增大,分离点前移,机翼后部的涡流区扩大,压力减小,机翼前后的压力差增加,故压差阻力增加。迎角增大到超过临界迎角以后,由于分离点迅速前移,涡流区迅速扩大,因此压差阻力急剧增加。
小于临界迎角,迎角增大时,由于机翼上、下表面的压力差增大,使翼尖涡流的作用更强,下洗角增大,导致实际升力更向后倾斜,故诱导阻力增大。超过临界迎角,迎角增大,由于升力降低,故诱导阻力随之减小。
综上所述,在小迎角的情况下增加迎角时,由于升力的增加和涡流区的扩大都很慢,故压差阻力和诱导阻力增加都很少,这时机翼的阻力主要是摩擦阻力,因此整个机翼阻力增加不多。当迎角逐渐变大以后,再增大迎角时,由于机翼升力的增加和涡流区的扩大都加快,故压差阻力和诱导阻力的增加也随之加快。特别是诱导阻力,在大迎角时,随着迎角的增大而增加更快。因此,整个机翼的阻力随着迎角的增大而增加较快。这时,诱导阻力是机翼阻力的主要部份。超过临界迎角以后,虽然诱导阻力要随着升力的降低而减小,但由于压差阻力的急剧增加,结果使整个机翼阻力增加更快。
简单说:迎角增大,阻力增大;迎角越大,阻力增加越多;超过临界迎角,阻力急剧增大。

为什么大迎角飞行能获得较大生力

产生升力的原因是机翼上下表面的压力差 当迎角变大后 下表面气流速度不变 上表面速度变快 由伯努利定律 流体速度越大 压强越小 可见上下表面压力差会更大 升力增加
但当迎角达到一定程度后 机翼上表边的气流变得不稳定 容易发生气流分离 这时候诱导阻力和零升阻力都会变大 还容易出现附面层 这时候升力就要下降了

影响飞机作战性能的因素

飞机状态的保持和改变的基本原理:作用于飞机上的各空气动力,如果不通过飞机重心,就会形成绕飞机重心的力矩。飞机飞行状态的变化,归根到底,都是力和力矩作用的结果。飞行中的四个力飞行中作用在飞机上的四个力是升力、重力、拉力和阻力。升力是由流过机翼上下表面的气流产生的一个向上的力,它将飞机支撑在空中。重力与升力的方向相反,它是由地球引力产生的一个向下的力。拉力是驱使飞机在空中前进的力,它的大小主要随发动机功率而变化。与拉力相反的是阻力,它是一个限制飞机速度的向后的力。 升力 升力是非常重要的空气动力,在平飞中,它与重力的方向相反,大小相等。若其他空气动力保持恒定j则飞机既不增加高度也不掉高度,飞机处于平衡状态。 当飞机停放在停机坪上时也处于平衡状态。在静止的空气中,大气对机翼的上下表面施加相同的压力,不存在空气动力。产生空气动力的前提是空气相对于飞机,尤其是相对于机翼运动。在飞行中空气作用于机翼上下表面的压力是不相同的。流过机翼的气流所产生的压力差是升力的主要来源。尽管有多种因素对此差异有影响,但机翼的形状是主要因素,另外几种影响升力的因素。设计机翼时,应考虑如何将气流分成机翼下表面为高压区,上表面为低压区。 阻力 如上所述,阻力与升力紧密相关。对飞机周围平滑气流的任何扰动和改变都会产生阻力。弯度高、面积大的机翼比面积小、中弯度的机翼产生的阻力大。增加空速或迎角的同时也增大了阻力和升力。阻力与飞行方向相反,即与拉力方向相反,它限制了飞机向前的速度。阻力从广义上可分为废阻力和诱导阻力。 1.废阻力 废阻力是指除直接与升力产生有关的阻力外的所有阻力。它是由飞机周围气流的分离产生的。废阻力通常可分为三类:形状阻力、摩擦阻力和干扰阻力。形状阻力是飞机的突出部位与相对气流产生的,阻力的大小与突出部位的大小和形状有关。例如,一个长方体就比一根光滑圆柱的阻力大得多,流线形就可以减小形状阻力。 摩擦阻力是由于不光滑的飞机表面产生的。即使这些表面看起来非常光滑,但在显微镜下,它们仍然显得相当粗糙。薄薄的一层空气吸附在这些粗糙的表面,形成导致阻力产生的小旋涡。干扰阻力出现在飞机表面变化的气流相遇和相互作用处。这种相互作用产生了额外的力。例如,在机翼和机身的结合部,交汇的气流就会产生干扰阻力。每种废阻力都随飞机速度而变化,它的大小与飞机速度的平方成正比。 2.诱导阻力 诱导阻力是升力产生的副产品,它与机翼的迎角有直接关系。迎角越大诱导阻力就越大。为机翼通常处于小迎角和大空速或大迎角和小空速状态,因此诱导阻力与空速的关系也可曲线表示。 拉力 拉力是驱使飞机向前运动的作用力,其方向与阻力方向相反。多数飞机通过发动机带动螺旋桨而产生拉力。每个螺旋桨的桨叶与翼型一样具有弯度,这种形状加上桨叶的迎角,就减小了螺旋桨前部的压力,增加了后部的压力。螺旋桨产生拉力主要是通过增大流过桨叶的空气流量,而不是通过增大螺旋桨的转速。 平飞时,拉力与阻力相等。飞行员可以通过加减油门来增减拉力。当功率增加时,拉力大于阻力,使飞机加速。然而,在加速的同时,阻力也随之增加。只有当拉力超过阻力时,才能使飞机继续增速。当阻力再次与拉力相等时,飞机就不再增速而保持恒速运动,不过此时的空速比原来的大。减小拉力时,阻力使飞机减速。当飞机减速后,阻力也随之减小。当阻力减小至与拉力相等时,飞机就不再减速,飞机再次处于恒速运动状态。然而,此时的空速比原来的小。 重力 重力的作用方向是不变的,它总是铅直地指向地心。但飞机的重量不是一成不变的,它随着装载的设备、旅客、货物和燃油的变化而变化。在航线飞行中,由于燃油的消耗,总重量在减小。在一些特殊的飞行中也可能减轻重量。飞机的平衡:飞机的三个轴和重心为了确定飞机的姿态、运动轨迹、气动力和气动力矩的方向,必须建立坐标轴系。常用的坐标轴有地面轴系、机体轴系、气流轴系和半机体轴系。在研究飞机的平衡、稳定性和操纵性问题时,采用机体轴系。除地面轴系外,其他都是活动坐标系,随着飞机运动,坐标轴在空间的位置和方向都发生变化。活动轴系的原点都在飞机的重心(质心)上。 螺旋桨的拉力或喷气发动机的推力,其作用线若不通过飞机重心也会形成绕重心的俯仰力矩,这叫拉力或推力力矩,对于同一架飞机来说,拉力或推力形成的俯仰力矩的大小主要受油门位置的影响。增大油门,拉力或推力增大,俯仰力矩增大。飞机的俯仰平衡,飞行中飞机的机翼、机身、尾翼等部件都承受着空气动力的作用,所有作用在飞机上的外力与外力矩之和为零的飞行状态,称为平衡状态。通常直线运动是飞机的一种平衡状态。 飞机的平衡包括“作用力的平衡”和“力矩的平衡”两个方面。把飞机当做一个质点,飞机质心(重心)移动速度的变化取决于作用在飞机上的外力是否平衡,属于作用力 平衡问题; 影响飞机平衡的主要因素 影响俯仰平衡的因素很多,主要有:加减油门、收放襟翼、收放起落架和重心变化。 加减油门会改变拉力或推力的大小,从而改变拉力力矩或推力力矩的大小,影响飞机的俯仰平衡。但需要指出的是,加减油门后,飞机是上仰还是下俯,不能单看拉力力矩或推力力矩对俯仰平衡的影响,而需要综合考虑加减油门所引起的机翼、水平尾翼等力矩的变化。 飞机的方向平衡,是作用于飞机的各偏转力矩之和为0。飞机取得方向平衡后,不绕立轴转动,侧滑角不变或侧滑角为0。飞机的稳定性原理与悬摆的稳定性原理基本上是一样的。飞机之所以有稳定性,首先是因为飞机偏离原平衡状态时出现了稳定力矩,使飞机具有自动恢复原来平衡状态的趋势;其次是在摆动过程中,又出现了阻尼力矩,促使飞机摆动减弱乃至消失。可见,飞机的稳定性,就是在飞行中,当飞机受到微小扰动而偏离原来的平衡状态,并在扰动消失后,飞行员不给与任何操纵,飞机自动恢复原来平衡状态的特性。飞机的稳定性 在研究飞机的稳定性之前,先看一般物体的稳定性,一个稳定的物体必须具备一定的条件。例如一个悬挂着的、处于平衡状态的摆锤(见图4.10),受微小扰动偏离平衡位置,在因为水平尾翼附加升力距离飞机重心的距离远。根据平行力求合力的原理,必然使飞机总的附加升力的作用点,即飞机焦点大大向后移动。 在飞行中,飞机经常会受到各种各样的扰动(如阵风、发动机工作不均衡、舵面的偶然偏转等),使飞机偏离原来平衡状态,偏离后,飞机若能自动恢复原来的平衡状态,则称飞机是稳定的,或飞机具有稳定性。 飞机的稳定性是飞机本身必须具有的一种特性,但飞机的稳定性不是一成不变的,而是随着飞行条件的改变而变化的。也就是说,在一定的飞行条件下,飞机具有足够的稳定性,而在另一些飞行条件下,飞机的稳定性可能减弱,甚至由稳定变成不稳定。同时飞机的稳定|生与飞机的操纵性有着密切的关系,要学习飞机的操纵性,就必须先懂得飞机的稳定性。方向稳定性:飞行中,飞机受扰动以致方向平衡状态遭到破坏,在扰动消失后,飞机自动趋向恢复原来方向平衡状态的特性叫飞机的方向稳定性。飞机之所以具有方向稳定性,是方向稳定力矩和方向阻尼力矩共同作用的结果。另外,机翼的上下位置不同对飞机的横侧稳定性也有影响。如图4.20所示,当飞机受到扰动呈现坡度产生侧滑时,对于上单翼飞机来说,侧滑前翼下表面,气流受机身的阻挡,流速减慢,压力升高,升力增大,于是形成横侧稳定力矩,使飞机的横侧稳定性增强;对于下单翼飞机来说,侧滑前翼上表面,气流受到阻挡,流速减慢,压力升高,升力减小,于是形成横侧不稳定力矩,使飞机的横侧稳定性减弱;对于中单翼飞机来说,侧滑前翼上下表面,气流均受到机身阻挡,流速均减小,压力均增高,对飞机的横侧稳定性影响不大。横侧稳定性:飞行中,受扰动以致横侧平衡状态遭到破坏,在扰动消失后,飞机自动趋向恢复原来横侧平衡状态的特性叫做飞机的横侧稳定性。飞机之所以具有横侧稳定性,是飞机横侧稳定力矩和横侧阻尼力矩共同作用的结果。影响飞机稳定性的因素飞机稳定性的强弱,一般用摆动衰减时间、摆动幅度、摆动次数来衡量。若飞机受扰动后,恢复原来平衡状态用的时间短、摆动幅度小,摆动次数越少,则飞机的稳定性越强。 飞机重心位置越靠前,重心到飞机焦点的距离越远,飞机受扰动后,迎角变化所产生的俯仰稳定力矩就越大,负值越大,飞机的俯仰稳定性越强。 重心位置越靠前,飞机在同样的扰动下,俯仰摆动的幅度比较小。这是因为重心位置越靠前,飞机的俯仰稳定力矩大,由扰动所引起的迎角增量就越小,即飞机俯仰摆动的幅度越小。 重心位置越靠前,飞机的方向稳定性增强,但不明显。因为重心到垂尾侧力着力点的距离,比重心到飞机焦点的距离大得多,所以,重心位置移动对方向稳定陡影响小。重心位置前、后移动,不影响飞机的横侧稳定性。因为重心位置前后移动不影响飞机的滚转力矩的大小。 影响飞机操纵性的因素:飞机的操纵性不是一成不变的,它受到许多因素的制约,现就影响操纵性的主要因素’分析如下: 1)飞机重心位置前后移动对操纵性的影响和重心的前后极限位置重心位置的前后移动,会引起平飞中升降舵偏转角和杆力发生变化。 2)飞行速度对飞机操纵性的影响 在俯仰和方向操纵性方面,以杆、舵行程相同作比较。在飞行速度比较大的情况下,同样多的舵偏角,产生的操纵力矩大,角速度自然也大。因此,飞机达到与此舵偏角相对应的平衡迎角或侧滑角所需的时间就比较短。在横侧操纵性方面,如果压盘行程亦即副翼转角相同,则飞行速度大,横侧操纵力矩大,角速度也大。于是,飞机达到相同坡度的时间短。总之,飞行速度大,飞机反应快,飞机操纵性好;飞行速度小,飞机反应慢,飞机操纵性变差。 3)飞行高度对操纵性的影响 以同一真速在高空飞行,动压减小,飞行员为保持杆、舵在一定位置所需的力量减轻。如果在不同的高度,保持同一真速平飞,因高度升高动压减小,各平飞真速所对应的迎角普遍增大。与低空相比,高空飞行驾驶盘位置要靠后些,升降舵上偏角要大些。大速度飞行时,推杆力将减小。另外,若保持同一真速在不同高度飞行,高度升高,空气密度降低,舵面偏转同样角度,高空产生的操纵力矩小,角加速度随之减小,飞机达到对应的迎角,侧滑角或坡度所需的时间增长,也就是说飞机反应匣。归纳起来,高空飞行有杆、舵变轻,反应迟缓的现象。

飞机飞行原理?

飞行原理简介(一)
要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。这些问题将分成几个部分简要讲解。
一、飞行的主要组成部分及功用
到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成:
1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。
2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。
3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。
4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。
5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。
飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。
二、飞机的升力和阻力
飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理:
流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。
连续性定理阐述了流体在流动中流速和管道切面之间的关系。流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。
伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力大。
飞机的升力绝大部分是由机翼产生,尾翼通常产生负升力,飞机其他部分产生的升力很小,一般不考虑。从上图我们可以看到:空气流到机翼前缘,分成上、下两股气流,分别沿机翼上、下表面流过,在机翼后缘重新汇合向后流去。机翼上表面比较凸出,流管较细,说明流速加快,压力降低。而机翼下表面,气流受阻挡作用,流管变粗,流速减慢,压力增大。这里我们就引用到了上述两个定理。于是机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和就是机翼的升力。这样重于空气的飞机借助机翼上获得的升力克服自身因地球引力形成的重力,从而翱翔在蓝天上了。
机翼升力的产生主要靠上表面吸力的作用,而不是靠下表面正压力的作用,一般机翼上表面形成的吸力占总升力的60-80%左右,下表面的正压形成的升力只占总升力的20-40%左右。
飞机飞行在空气中会有各种阻力,阻力是与飞机运动方向相反的空气动力,它阻碍飞机的前进,这里我们也需要对它有所了解。按阻力产生的原因可分为摩擦阻力、压差阻力、诱导阻力和干扰阻力。
1.摩擦阻力——空气的物理特性之一就是粘性。当空气流过飞机表面时,由于粘性,空气同飞机表面发生摩擦,产生一个阻止飞机前进的力,这个力就是摩擦阻力。摩擦阻力的大小,决定于空气的粘性,飞机的表面状况,以及同空气相接触的飞机表面积。空气粘性越大、飞机表面越粗糙、飞机表面积越大,摩擦阻力就越大。
2.压差阻力——人在逆风中行走,会感到阻力的作用,这就是一种压差阻力。这种由前后压力差形成的阻力叫压差阻力。飞机的机身、尾翼等部件都会产生压差阻力。
3.诱导阻力——升力产生的同时还对飞机附加了一种阻力。这种因产生升力而诱导出来的阻力称为诱导阻力,是飞机为产生升力而付出的一种“代价”。其产生的过程较复杂这里就不在详诉。
4.干扰阻力——它是飞机各部分之间因气流相互干扰而产生的一种额外阻力。这种阻力容易产生在机身和机翼、机身和尾翼、机翼和发动机短舱、机翼和副油箱之间。
以上四种阻力是对低速飞机而言,至于高速飞机,除了也有这些阻力外,还会产生波阻等其他阻力。
三、影响升力和阻力的因素
升力和阻力是飞机在空气之间的相对运动中(相对气流)中产生的。影响升力和阻力的基本因素有:机翼在气流中的相对位置(迎角)、气流的速度和空气密度以及飞机本身的特点(飞机表面质量、机翼形状、机翼面积、是否使用襟翼和前缘翼缝是否张开等)。
1.迎角对升力和阻力的影响——相对气流方向与翼弦所夹的角度叫迎角。在飞行速度等其它条件相同的情况下,得到最大升力的迎角,叫做临界迎角。在小于临界迎角范围内增大迎角,升力增大:超过临界临界迎角后,再增大迎角,升力反而减小。迎角增大,阻力也越大,迎角越大,阻力增加越多:超过临界迎角,阻力急剧增大。
2.飞行速度和空气密度对升力阻力的影响——飞行速度越大升力、阻力越大。升力、阻力与飞行速度的平方成正比例,即速度增大到原来的两倍,升力和阻力增大到原来的四倍:速度增大到原来的三倍,胜利和阻力也会增大到原来的九倍。空气密度大,空气动力大,升力和阻力自然也大。空气密度增大为原来的两倍,升力和阻力也增大为原来的两倍,即升力和阻力与空气密度成正比例。
3,机翼面积,形状和表面质量对升力、阻力的影响——机翼面积大,升力大,阻力也大。升力和阻力都与机翼面积的大小成正比例。机翼形状对升力、阻力有很大影响,从机翼切面形状的相对厚度、最大厚度位置、机翼平面形状、襟翼和前缘翼缝的位置到机翼结冰都对升力、阻力影响较大。还有飞机表面光滑与否对摩擦阻力也会有影响,飞机表面相对光滑,阻力相对也会较小,反之则大.

简答 阐述飞机的飞行原理

飞行原理简介(一)

要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。这些问题将分成几个部分简要讲解。

一、飞行的主要组成部分及功用

到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成:

1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。

2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。

3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。

4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。

5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。

飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。

二、飞机的升力和阻力

飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理:

流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。

连续性定理阐述了流体在流动中流速和管道切面之间的关系。流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。

伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力大。

飞机的升力绝大部分是由机翼产生,尾翼通常产生负升力,飞机其他部分产生的升力很小,一般不考虑。从上图我们可以看到:空气流到机翼前缘,分成上、下两股气流,分别沿机翼上、下表面流过,在机翼后缘重新汇合向后流去。机翼上表面比较凸出,流管较细,说明流速加快,压力降低。而机翼下表面,气流受阻挡作用,流管变粗,流速减慢,压力增大。这里我们就引用到了上述两个定理。于是机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和就是机翼的升力。这样重于空气的飞机借助机翼上获得的升力克服自身因地球引力形成的重力,从而翱翔在蓝天上了。

机翼升力的产生主要靠上表面吸力的作用,而不是靠下表面正压力的作用,一般机翼上表面形成的吸力占总升力的60-80%左右,下表面的正压形成的升力只占总升力的20-40%左右。

飞机飞行在空气中会有各种阻力,阻力是与飞机运动方向相反的空气动力,它阻碍飞机的前进,这里我们也需要对它有所了解。按阻力产生的原因可分为摩擦阻力、压差阻力、诱导阻力和干扰阻力。

1.摩擦阻力——空气的物理特性之一就是粘性。当空气流过飞机表面时,由于粘性,空气同飞机表面发生摩擦,产生一个阻止飞机前进的力,这个力就是摩擦阻力。摩擦阻力的大小,决定于空气的粘性,飞机的表面状况,以及同空气相接触的飞机表面积。空气粘性越大、飞机表面越粗糙、飞机表面积越大,摩擦阻力就越大。

2.压差阻力——人在逆风中行走,会感到阻力的作用,这就是一种压差阻力。这种由前后压力差形成的阻力叫压差阻力。飞机的机身、尾翼等部件都会产生压差阻力。

3.诱导阻力——升力产生的同时还对飞机附加了一种阻力。这种因产生升力而诱导出来的阻力称为诱导阻力,是飞机为产生升力而付出的一种“代价”。其产生的过程较复杂这里就不在详诉。

4.干扰阻力——它是飞机各部分之间因气流相互干扰而产生的一种额外阻力。这种阻力容易产生在机身和机翼、机身和尾翼、机翼和发动机短舱、机翼和副油箱之间。

以上四种阻力是对低速飞机而言,至于高速飞机,除了也有这些阻力外,还会产生波阻等其他阻力。

三、影响升力和阻力的因素

升力和阻力是飞机在空气之间的相对运动中(相对气流)中产生的。影响升力和阻力的基本因素有:机翼在气流中的相对位置(迎角)、气流的速度和空气密度以及飞机本身的特点(飞机表面质量、机翼形状、机翼面积、是否使用襟翼和前缘翼缝是否张开等)。

1.迎角对升力和阻力的影响——相对气流方向与翼弦所夹的角度叫迎角。在飞行速度等其它条件相同的情况下,得到最大升力的迎角,叫做临界迎角。在小于临界迎角范围内增大迎角,升力增大:超过临界临界迎角后,再增大迎角,升力反而减小。迎角增大,阻力也越大,迎角越大,阻力增加越多:超过临界迎角,阻力急剧增大。

2.飞行速度和空气密度对升力阻力的影响——飞行速度越大升力、阻力越大。升力、阻力与飞行速度的平方成正比例,即速度增大到原来的两倍,升力和阻力增大到原来的四倍:速度增大到原来的三倍,胜利和阻力也会增大到原来的九倍。空气密度大,空气动力大,升力和阻力自然也大。空气密度增大为原来的两倍,升力和阻力也增大为原来的两倍,即升力和阻力与空气密度成正比例。

3,机翼面积,形状和表面质量对升力、阻力的影响——机翼面积大,升力大,阻力也大。升力和阻力都与机翼面积的大小成正比例。机翼形状对升力、阻力有很大影响,从机翼切面形状的相对厚度、最大厚度位置、机翼平面形状、襟翼和前缘翼缝的位置到机翼结冰都对升力、阻力影响较大。还有飞机表面光滑与否对摩擦阻力也会有影响,飞机表面相对光滑,阻力相对也会较小,反之则大.

飞机飞上天的原理是什么?

飞 行 原 理 简 介
了解一些简单的飞行原理,可以让我们从道理上弄清飞机为什么能飞这个问题。要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。这些问题将分成几个部分简要讲解。
一、飞行的主要组成部分及功用
**到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成
1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。
2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。
3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。
4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支掌飞机。
5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。
*飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。
二、飞机的升力和阻力
**飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理
流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。
**连续性定理阐述了流体在流动中流速和管道切面之间的关系。流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。
伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力大。
**飞机的升力绝大部分是由机翼产生,尾翼通常产生负升力,飞机其他部分产生的升力很小,一般不考虑。从上图我们可以看到:空气流到机翼前缘,分成上、下两股气流,分别沿机翼上、下表面流过,在机翼后缘重新汇合向后流去。机翼上表面比较凸出,流管较细,说明流速加快,压力降低。而机翼下表面,气流受阻挡作用,流管变粗,流速减慢,压力增大。这里我们就引用到了上述两个定理。于是机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和就是机翼的升力。这样重于空气的飞机借助机翼上获得的升力克服自身因地球引力形成的重力,从而翱翔在蓝天上了。
* 机翼升力的产生主要靠上表面吸力的作用,而不是靠下表面正压力的作用,一般机翼上表面形成的吸力占总升力的60-80%左右,下表面的正压形成的升力只占总升力的20-40%左右。
**飞机飞行在空气中会有各种阻力,阻力是与飞机运动方向相反的空气动力,它阻碍飞机的前进,这里我们也需要对它有所了解。按阻力产生的原因可分为摩擦阻力、压差阻力、诱导阻力和干扰阻力。
1.摩擦阻力——空气的物理特性之一就是粘性。当空气流过飞机表面时,由于粘性,空气同飞机表面发生摩擦,产生一个阻止飞机前进的力,这个力就是摩擦阻力。摩擦阻力的大小,决定于空气的粘性,飞机的表面状况,以及同空气相接触的飞机表面积。空气粘性越大、飞机表面越粗糙、飞机表面积越大,摩擦阻力就越大。
2.压差阻力——人在逆风中行走,会感到阻力的作用,这就是一种压差阻力。这种由前后压力差形成的阻力叫压差阻力。飞机的机身、尾翼等部件都会产生压差阻力。
3.诱导阻力——升力产生的同时还对飞机附加了一种阻力。这种因产生升力而诱导出来的阻力称为诱导阻力,是飞机为产生升力而付出的一种“代价”。其产生的过程较复杂这里就不在详诉。
4.干扰阻力——它是飞机各部分之间因气流相互干扰而产生的一种额外阻力。这种阻力容易产生在机身和机翼、机身和尾翼、机翼和发动机短舱、机翼和副油箱之间。
*以上四种阻力是对低速飞机而言,至于高速飞机,除了也有这些阻力外,还会产生波阻等其他阻力。
三、影响升力和阻力的因素
**升力和阻力是飞机在空气之间的相对运动中(相对气流)中产生的。影响升力和阻力的基本因素有:机翼在气流中的相对位置(迎角)、气流的速度和空气密度以及飞机本身的特点(飞机表面质量、机翼形状、机翼面积、是否使用襟翼和前缘翼缝是否张开等)。
1.迎角对升力和阻力的影响——相对气流方向与翼弦所夹的角度叫迎角。在飞行速度等其它条件相同的情况下,得到最大升力的迎角,叫做临界迎角。在小于临界迎角范围内增大迎角,升力增大:超过临界临界迎角后,再增大迎角,升力反而减小。迎角增大,阻力也越大,迎角越大,阻力增加越多:超过临界迎角,阻力急剧增大。
2.飞行速度和空气密度对升力阻力的影响——飞行速度越大升力、阻力越大。升力、阻力与飞行速度的平方成正比例,即速度增大到原来的两倍,升力和阻力增大到原来的四倍:速度增大到原来的三倍,胜利和阻力也会增大到原来的九倍。空气密度大,空气动力大,升力和阻力自然也大。空气密度增大为原来的两倍,升力和阻力也增大为原来的两倍,即升力和阻力与空气密度成正比例。
3,机翼面积,形状和表面质量对升力、阻力的影响——机翼面积大,升力大,阻力也大。升力和阻力都与机翼面积的大小成正比例。机翼形状对升力、阻力有很大影响,从机翼切面形状的相对厚度、最大厚度位置、机翼平面形状、襟翼和前缘翼缝的位置到机翼结冰都对升力、阻力影响较大。还有飞机表面光滑与否对摩擦阻力也会有影响,飞机表面相对光滑,阻力相对也会较小,反之则大。

参考资料:

http://www.cfso.org/train_dep/basic1.htm
‖清心也可以 回答时间 2007-06-19 14:28
其他答案飞机是比空气重的飞行器,因此需要消耗自身动力来获得升力。而升力的来源是飞行中空气对机翼的作用。
机翼的上表面是弯曲的,下表面是平坦的,因此在机翼与空气相对运动时,流过上表面的空气在同一时间(T)内走过的路程(S1)比流过下表面的空气的路程(S2)远,所以在上表面的空气的相对速度比下表面的空气快(V1=S1/T>V2=S2/T1)。根据帕奴利定理——“流体对周围的物质产生的压力与流体的相对速度成反比。”,因此上表面的空气施加给机翼的压力F1小于下表面的F2。F1、F2的合力必然向上,这就产生了升力。
从机翼的原理,我们也就可以理解螺旋桨的工作原理。螺旋桨就好像一个竖放的机翼,凸起面向前,平滑面向后。旋转时压力的合力向前,推动螺旋桨向前,从而带动飞机向前。当然螺旋桨并不是简单的凸起平滑,而有着复杂的曲面结构。老式螺旋桨是固定的外形,而后期设计则采用了可以改变的相对角度等设计,改善螺旋桨性能。
飞行需要动力,使飞机前进,更重要的是使飞机获得升力。早期飞机通常使用活塞发动机作为动力,又以四冲程活塞发动机为主。这类发动机的原理如图,主要为吸入空气,与燃油混合后点燃膨胀,驱动活塞往复运动,再转化为驱动轴的旋转输出:
单单一个活塞发动机发出的功率非常有限,因此人们将多个活塞发动机并联在一起,组成星型或V型活塞发动机。下图为典型的星型活塞发动机。
现代高速飞机多数使用喷气式发动机,原理是将空气吸入,与燃油混合,点火,爆炸膨胀后的空气向后喷出,其反作用力则推动飞机向前。下图的发动机剖面图里,一个个压气风扇从进气口中吸入空气,并且一级一级的压缩空气,使空气更好的参与燃烧。风扇后面橙红色的空腔是燃烧室,空气和油料的混和气体在这里被点燃,燃烧膨胀向后喷出,推动最后两个风扇旋转,最后排出发动机外。而最后两个风扇和前面的压气风扇安装在同一条中轴上,因此会带动压气风扇继续吸入空气,从而完成了一个工作循环。

诱导阻力的形成原因

说白了就是,因为机翼产生升力的同时,会使得下翼面的气压高于上翼面的气压,这使得下翼面处的气流都想往上跑来平衡压差,但是前后都在吹风,它跑不过去,怎么办呢?它就从侧面,也就是沿着飞机的机翼(展向)跑,从翼尖那里翻上去,但是它在往上翻的同时机翼在往前移动,所以等到它翻上去了,机翼就不再原处了,于是它刹不住车又往下走了,这样一个不断旋转的过程,就会在翼尖处形成叫做尾涡的东西。也就是经常你看飞机做机动时翼尖产生的那股云(当然这只是通俗的说法,此外这个地方可能说法不准确,战斗机做机动产生的涡比较多,还有边条翼产生的脱体涡,这个地方我们只讨论翼尖涡),尾涡的能量非常之大,大型飞机的尾涡能够把小飞机打翻,所以你就可以想成飞机机翼后面带了一个龙卷风,这个龙卷风使得机翼后面的气流是往下流动的,(因为如果从飞机正面看,它右机翼的尾涡是从下到右到上,再倒下,也就是逆时针的),这个尾涡已经阐述了非常强大,它就会带动下翼面的空气跟他一起斜向下流动(下洗),这样我们知道迎角的概念是飞机弦线与相对风的夹角,但是这时候相对风在机翼下面斜向下了,这就使得迎角减小了(有效迎角),升力就不再是垂直方向而是斜向上翼面后方,那么这个时候把升力分解的话,那个向后的力就是诱导阻力了。
在飞机所受的所有阻力中,只有诱导阻力为升致阻力(由于升力的产生导致了它的产生),其他的都为零升阻力,就是垃圾,没用。诱导阻力是产生升力必须附带的产物,空速越大,可以简单理解为斜向下的气流越多,这个时候分力也就越大,当然,假设机翼无限长,也就是二维的情况的话,气流也就没地方跑到上翼面去了,所以二维翼型不存在诱导阻力,当然,并不是说诱导阻力不可减少,在气动设计中是可以通过设计消减的,同时,与翼尖涡相关的一个有趣应用就是翼梢小翼,这里就不展开讲了,感兴趣自行谷歌。
关于诱导阻力跟升阻比的关系,在升阻比定义中,阻力还包括了几个其他阻力(压差,粘滞,干扰..),诱导阻力系数为 Cd(induce)=Cl/(pi*Ar),其中AR为展弦比,可以只管的认为展弦比越大,在同等机翼面积下翼展越长,越接近无限翼展的2D情况,因此诱导阻力会变小。