方法:

中心原子氧化数 等于 配离子电荷减去配体氧化数之和。

配位化合物为一类具有特征化学结构的化合物,由中心原子和围绕它的分子或离子完全或部分通过配位键结合而形成。

包含由中心原子或离子与几个配体分子或离子以配位键相结合而形成的复杂分子或离子,通常称为配位单元。凡是含有配位单元的化合物都称作配位化合物,研究配合物的化学分支称为配位化学。

如何看配位中心原子氧化态,麻烦哪位给介绍一下,谢谢!

配合物由中心原子、配位体和外界组成,例如硫酸四氨合铜(Ⅱ)分子式为〔Cu(NH3)4〕SO4,其中Cu2+是中心原子,NH3是配位体,SO4 2-是外界。 配位化合物 中心原子可以是带电的离子,如〔Cu(NH3)4〕SO4中的Cu2+,也可以是中性的原子,如四羰基镍〔Ni(CO)4〕中的Ni。周期表中所有的金属元素都可作为中心原子,但以过渡金属最易形成配合物。配位体可以是中性分子,如〔Cu(NH3)4〕SO4中的NH3,也可以是带电的离子,如亚铁氰化钾K4〔Fe(CN)6〕中的CN-。与中心原子相结合的配位体的总个数称为配位数,例如K4〔Fe(CN)6〕中Fe2+的配位数是6 。中心原子和配位体共同组成配位本体(又称内界),在配合物的分子式中,配位本体被括在方括弧内,如〔Cu(NH3)4〕SO4中,〔Cu(NH3)4〕2+就是配位本体。它可以是中性分子,如〔Ni(CO)4〕;可以是阳离子,如[Cu(NH3)4〕2+ ;也可以是阴离子,如〔Fe(CN)6〕4-。带电荷的配位本体称为配离子。 配体给出孤对电子或多个不定域电子,中心原子接受孤对电子或多个不定域电子,组成使二者结合的配位键。例如,K4【Fe(CN)6】、【Cu(NH3)4】SO4、【Pt(NH3)2Cl2】和【Ni(CO)4】都是配合物。其中:CN:-、∶NH3、和∶CO∶是配体,皆有孤对电子(∶),Fe2+、Cu2+、Pt2+和Ni是中心原子,皆可接受孤对电子。配体和中心原子组成配位本体,列入方括弧中。配合物在溶液中发生部分离解,但仍趋向保持其本体。周期表中所有金属均可作为中心原子,其中过渡金属(见过渡元素)比较容易形成配合物。非金属也可作为中心原子。配体分为单齿配体和多齿配体两种。单齿只有一个配位原子,例如CN-、CO、NH3和Cl-均是单齿配体,配位原子分别是C、N和Cl,它们直接与中心原子键合。多齿有两个或两个以 配位化合物上配位原子:乙二胺H2NCH2CH2NH2是双齿配体,配位原子是两个N原子;乙二胺四乙酸根(简称EDTA4-)(-OOCCH2)2N-CH2-CH2-N(CH2COO-)2是六齿配体,配位原子是两个N和四个羧基上的O。配体为负离子或中性分子,偶尔也有正离子(如NH2NH幦)。带电荷的配位本体称为配离子,带正电荷的配离子称配阳离子,带负电荷的称配阴离子。配离子的电荷为金属离子和配体所带电荷之和,例如Fe2+和6CN-配位产生【Fe(CN)6】4-配阴离子,Cu2+和4NH3产生【Cu(NH3)4】2+配阳离子,它们各与带相反电荷的阳离子或阴离子组成配合物。中性配位本体就是配合物,例如Pt2+和2NH3及2Cl-产生【Pt(NH3)2Cl2】;Ni和4CO产生【Ni(CO)4】。配合物可为单核或多核,单核只有一个中心原子;多核有两个或两个以上中心原子。上述配合物均为单核配合物;多核配合物如【(CO)3Fe(CO)3Fe(CO)3】。 [编辑本段]命名方法 ①命名配离子时,配位体的名称放在前,中心原子名称放在后。②配位体和中心原子的名称之间用“合”字相连[1]。③中心原子为离子者,在金属离子的名称之后附加带圆括号的罗马数字,以表示离子的价态。④配位数用中文数字在配位体名称之前。⑤如果配合物中有多种配位体,则它们的排列次序为:阴离子配位体在前,中性分子配位体在后;无机配位体在前,有机配位体在后。不同配位体的名称之间还要用中圆点分开。根据以上规则,〔Cu(NH3)4〕SO4称硫酸四氨合铜(Ⅱ),〔Pt(NH3)2Cl2〕称二氯·二氨合铂(Ⅱ),K〔PtCl3(C2H4)〕称三氯·(乙烯)合铂(Ⅱ)酸钾。实际上,配合物还常用俗名,如K4〔Fe(CN)6〕称黄血盐 ,K3〔Fe(CN)6〕称赤血盐 ,Fe4〔Fe(CN)6〕3称普鲁士蓝。 [编辑本段]命名规则 配位化合物系统名称是按照《无机化学命名原则》(1980)命名的。命名时,阴离子在前,阳离子在后。对于中性和阳离子配合物,首先命名配体,词尾缀以“合”字与金属名称相连,在金属名称之后附加括号的罗马数字,标明氧化态。有不同配体时,在配体名称之间以中圆点(·)分开。配体的次序是负离子在前,中性分子在后;无机配体在前,有机配体在后。相同配体多于一个时,前缀倍数词头二、三等标明简单基团如氯、硝酸根、水等的数目;对于较复杂的配体如氨基乙酸根H2NCH2COO-、三苯基膦P(C6H5)3等的名称,倍数词头所标的配体加以括号,以免混淆。阴离子配合物的命名规则相同,但在金属名称后面缀以“酸”字。配合物中含有连接两个或两个以上金属原子的桥配体时,用前缀μ表示,例如: 除系统命名外,配合物也有用俗名命名的,例如K4【Fe(CN)6】称为亚铁氰化钾。许多普通离子,如CrO娸、WO娸、SO娸、PO婯等皆是配离子,因为它们既有中心原子的构型,也有一部分配位键,但它们一向是以普通化合物命名,故不采用系统命名。又如,PF5和SiF4中没有配位键,为普通化合物,当P和Si与F-以配位键结合形成配离子【PF6】-和【SiF6】2-时,则应命名为六氟合磷酸根离子和六氟合硅酸根离子。 [编辑本段]价键 在配合物中,中心原子与配位体之间共享两个电子,组成的化学键称为配位键,这两个电子不是由两个原子各提供一个,而是来自配位体原子本身,例如〔Cu(NH3)4〕SO4中,Cu2+与NH3共享两个电子组成配位键,这两个电子都是由N原子提供的。形成配位键的条件是中心原子必须具有空轨道,而过渡金属原子最符合这一条件。 [编辑本段]分类 按配位体分类,可有: ①水合配合物。为金属离子与水分子形成的配合物,几乎所有金属离子在水溶液中都可形成水合配合物,如〔Cu(H2O)4〕2+、〔Cr(H2O)6〕3+。 ②卤合配合物。金属离子与卤素(氟、氯、溴、碘)离子形成的配合物,绝大多数金属都可生成卤合配合物,如K2〔PtCl4〕、Na3〔AlF6〕。 ③氨合配合物。金属离子与氨分子形成的配合物,如〔Cu(NH3)4〕SO4。 ④氰合配合物。金属离子与氰离子形成的配合物 ,如K4〔Fe(CN)6〕。⑤金属羰基合物。金属与羰基(CO)形成的配合物。如〔Ni(CO)4〕。 按中心原子分类,可有: ①单核配合物。只有一个中心原子,如K2〔CoCl4〕。 ②多核配合物。中心原子数大于1,如〔(H3N)4Co(OH)(NH2)Co(H2NCH2CH2NH2)2〕Cl4。 按成键类型分类,可有: ①经典配合物。金属与有机基团之间形成 σ配位键,如〔Al2(CH3)6〕。 ②簇状配合物。至少含有两个金属作为中心原子 ,其中还含有金属-金属键,如〔W6(Cl12)Cl6〕。 ③含不饱和配位体的配合物。金属与配位体之间形成π-σ键或π-π*反馈键 ,如K〔PtCl2(C2-H4)〕。 ④夹心配合物。中心原子为金属,配位体为有机基团,金属原子被夹在两个平行的碳环体系之间,例如二茂铁〔Fe(C5H5)2〕。 ⑤穴状配合物。配位体属于巨环多齿的有机化合物,如具有双环结构的N(CH2CH2OCH2CH2OCH2CH2)3N,它们与碱金属和碱土金属形成穴状配合物。 按学科类型分类,可有: ①无机配合物。中心原子和配位体都是无机物。 ②有机金属化合物。金属与有机物配位体之间形成的配合物。 ③生物无机化合物。生物配位体与金属形成的配合物,如金属酶、叶绿素、维生素B12。 [编辑本段]稳定性 通常,配位化合物的稳定性主要指热稳定性和配合物在溶液中是否容易电离出其组分(中心原子和配位体)。配位本体在溶液中可以微弱地离解出极少量的中心原子(离子)和配位体,例如〔Cu(NH3)4〕2+可以离解出少量的Cu2+和NH3: 配位本体在溶液中的离解平衡与弱电解质的电离平衡很相似,也有其离解平衡常数,称为配合物的稳定常数K: K越大,配合物越稳定,即在水溶液中离解程度小。 配合物在溶液中的稳定性与中心原子的半径、电荷及其在周期表中的位置有关。过渡金属的核电荷高,半径小,有空的d轨道和自由的d电子,它们容易接受配位体的电子对,又容易将d电子反馈给配位体。因此,它们都能形成稳定的配合物。碱金属和碱土金属恰好与过渡金属相反,它们的极化性低,具有惰性气体结构,形成配合物的能力较差,它们的配合物的稳定性也差。 [编辑本段]结构 有多种,最常见的为八面体和四面体。前者如【Fe(CN)6】4-,后者如【Ni(CO)4】:

怎样判断配位化合物中心原子的氧化数 如题

你好,
中心原子氧化数 = 配离子电荷 - 配体氧化数之和
如:[Fe(C2O4)3](3-)
Fe的氧化数 = -3 - 3 * (-2) = 3
希望有所帮助

如何判断配合物中心原子氧化数 及相关举例

这个要看配体.
有些配体算0价,比如CO,NH3,Ni(CO)6中Ni就是0价
连接的卤原子,氢原子,碳原子(直接用C单键相连的)每个均算中心原子+1价,比如CuCl4 2-中Cu就是4-2=+2价.

配合物的氧化态判定

你是说配合物中中心原子的氧化态判定吧,按公式来吧:
中心原子氧化态
+
求和[配体数*配体电荷]
=
配合物的电荷

[Co(en)(C2O4)2](-)
x
+
[
0*1
+
(-2)*2]
=
-1
x
=
+3
建议自己举例反复验证。

配合物中的中心原子的氧化数怎么计算

用配离子的电荷数与配体的电荷数相减就行了。

比如赤血盐K₃[Fe(CN)₆],从钾离子的电荷看出配离子是负三价的,然后再减去六个氰离子的负电荷,也就是负三减负六,可以算出铁是显正三价的。

在一定程度上标志着元素在化合物中的化合状态。在根据化合价的升降值和电子转移情况来配平氧化还原反应方程式时,除简单的离子化合物外,对于其他物质,往往不易确定元素的化合价数。

扩展资料:

在结构已知的共价化合物中,把属于两原子的共用电子对指定给两原子中电负性较大的原子时,分别在两原子上留下的表观电荷数就是它们的氧化数。

例如,在H2O中,氧原子的氧化数为-2,氢的为+1。对于同种元素两个原子之间的共价键,该元素的氧化数为零。

如该化合物中某一元素有二或二以上个共价键,则该元素的氧化数为其各个键所表现的氧化数的代数和。

对于某一化合物或单质,只要按照上述规则就可确定其中元素的氧化数,不必考虑分子的结构和键的类型。因此,对于氧化还原反应用氧化数比用化合价方便得多。现在氧化数已成为化学中的一个基本概念,用来定义与氧化还原反应有关的概念和配平氧化还原反应方程式。

参考资料来源:百度百科——氧化数