解决方法如下:

1、把数据、日志、索引放到不同的设备上,增加读取速度;

2、纵向、横向分割表,减少表的尺寸;

3、升级硬件;

4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量,注意填充因子要适当,索引应该尽量小,使用字节数小的列建索引好,不要对有限的几个值的字段建单一索引如性别字段;

4、提高网速。

如何解决SQL查询速度太慢?

呵呵,这个问题很有趣不是吗?

上面的同志们只是给出一些建议,以我的经验来看(oracle),

如果数据量较大,索引的重复量尽量避免,最好的方式是建立非业务id(最好使用自增或是序列),把这个id建立索引。

你的最大的问题就是,建立了索引后,索引列必须出现在where中,否则索引就白白建立了,比如你的id是从1一直到383000,那么你的语句可以写成

select

*

from

hr_worktime

where

id>-1

还有就是,where条件中避免出现!=,or,between,等东西,否则索引实效。

如何解决SQL Server查询速度缓慢的问题

SQL Server查询速度慢的原因有很多,常见的有以下几种:

1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)

2、I/O吞吐量小,形成了瓶颈效应。

3、没有创建计算列导致查询不优化。

4、内存不足

5、网络速度慢

6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)

7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)

8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。

9、返回了不必要的行和列

10、查询语句不好,没有优化

sql语句查询速度慢

可以分时操作呀,你把一部分数据融合之后做成视图或者把你的SQL语句写成存储过程。在条件里面尽量少使用“<>”不等于,或者not in,其实这也是告诉你不仅仅从数据结构的方面考虑问题哦

MySQL查询效率很慢的问题如何分析和解决

MySQL 在崩溃恢复时,会遍历打开所有 ibd 文件的 header page 验证数据字典的准确性,如果 MySQL 中包含了大量表,这个校验过程就会比较耗时。 MySQL 下崩溃恢复确实和表数量有关,表总数越大,崩溃恢复时间越长。另外磁盘 IOPS 也会影响崩溃恢复时间,像这里开发库的 HDD IOPS 较低,因此面对大量的表空间,校验速度就非常缓慢。另外一个发现,MySQL 8 下正常启用时居然也会进行表空间校验,而故障恢复时则会额外再进行一次表空间校验,等于校验了 2 遍。不过 MySQL 8.0 里多了一个特性,即表数量超过 5W 时,会启用多线程扫描,加快表空间校验过程。

如何跳过校验MySQL 5.7 下有方法可以跳过崩溃恢复时的表空间校验过程嘛?查阅了资料,方法主要有两种:

1. 配置 innodb_force_recovery可以使 srv_force_recovery != 0 ,那么 validate = false,即可以跳过表空间校验。实际测试的时候设置 innodb_force_recovery =1,也就是强制恢复跳过坏页,就可以跳过校验,然后重启就是正常启动了。通过这种临时方式可以避免崩溃恢复后非常耗时的表空间校验过程,快速启动 MySQL,个人目前暂时未发现有什么隐患。2. 使用共享表空间替代独立表空间这样就不需要打开 N 个 ibd 文件了,只需要打开一个 ibdata 文件即可,大大节省了校验时间。自从听了姜老师讲过使用共享表空间替代独立表空间解决 drop 大表时性能抖动的原理后,感觉共享表空间在很多业务环境下,反而更有优势。

临时冒出另外一种解决想法,即用 GDB 调试崩溃恢复,通过临时修改 validate 变量值让 MySQL 跳过表空间验证过程,然后让 MySQL 正常关闭,重新启动就可以正常启动了。但是实际测试发现,如果以 debug 模式运行,确实可以临时修改 validate 变量,跳过表空间验证过程,但是 debug 模式下代码运行效率大打折扣,反而耗时更长。而以非 debug 模式运行,则无法修改 validate 变量,想法破灭。

如何提高SQL查询速度

1

你老师说的对,建立索引是可以提高查询速度的。你插入了百万条数据,可以测试。如果在C字段上建立索引,那以该字段为查询条件,在建立后查询和删除索引后查询比较一下就知道了。

2

关于视图。是提高不了查询速度的,因为视图对应一个SQL语句,它只是存起来而已,最后需要进行视图消解才能进行查询,它和直接执行相应的语句是一样的,理论上还要慢一点。

3

关于存储过程,弄好了是可以提高查询效率的,因为存储过程会把一段查询,也就是SQL语句进行贤编译,然后将编译后的代码存在于服务器上,在用户查询时节省了SQL的编译时间,所以加快了查询速度。