水通过电解可以生成氢气和氧气。提供两种方法:

加入稀硫酸,利用电解池反应,阳极产生氧气,阴极产生氢气。水在直流电作用下,分解生成氢气和氧气,工业上用此法制纯氢和纯氧。

水怎样分解成氢气和氧气

水分解不是自发过程,需要加入能量,如水的电解。氧气和氢气能变成水可以是自发过程,氢气燃烧产物就是水。

1.

水(H2O)被直流电电解生成氢气和氧气的过程被称为电解水,电流通过水(H2O)时,在阴极通过原水形成氢气(H2)。在阳极则通过氧化水形成氧气(O2),氢气生成量大约是氧气的两倍,电解水是取代蒸汽重整制氢的下一代制备氢燃料方法。

2.

水电解制氢装置

the

installation

of

hydrogen

gas

produced

by

electro1ysising

water以水为原料,由水电解槽、氢(氧)气液分离器、氢(氧)气冷却器、氢(氧)气洗涤器等设备组合的统称。

3.

水电解制氢是一种较为方便的方法。在充满氢氧化钾或氢氧化钠的电解槽中通入直流电,水分子在电极上发生电化学反应,分解成氢气和氧气。其化学反应式如下

极:2H2O+2e

H2↑

+2OH-

极:

2OH—2e

H2O+1/2O2↑

总反应式:2H2O

=

2

H2↑+

O2↑

根据法拉弟定律,气体产量与电流成正比,与其它因素无关。氢氧化钾的作用在于增加水的电导,本身不参加电解反应,理论上是不消耗的。电解液中加入五氧化二矾的作用是在于降低电解电压。单位气体产量的电耗,取决于电解电压,电解槽的工作温度越高,电解电压越低,同时也增加了对电解槽材料,主要是隔膜材料的腐蚀。石棉在碱液中长期使用温度不能超过100℃,因此操作温度选择在80~85℃为宜。电解压力的选择主要根据用氢的需要。气体纯度决定于制氢机结构和操作情况。在设备完好(主要是电解槽隔膜无损坏)操作压力正常(主要是压差控制正常)的条件下,纯度是稳定的。

水是如何分解出氢气和氧气?

水在2000摄氏度以上可以分解成氢气和氧气。

化学方程式是:2H2O = 2H2↑ + O2↑。条件是高温。

这个温度下虽然水可以分解,分解的氢气和氧气随即燃烧,所以用高温分解水获得氢气好氧气的方法是不现实的。

水在直流电作用下,分解生成氢气和氧气,工业上用此法制纯氢和纯氧 。

化学实验:水的电解。

方程式:2H₂O=通电=2H₂↑+O₂↑(分解反应)

扩展资料:

1、水的氧化性:水跟较活泼金属或碳反应时,表现氧化性,氢被还原成氢气。

2Na+2H₂O=2NaOH+H₂↑

Mg+2H₂O=Mg(OH)₂↓+H₂↑

3Fe+4H₂O(水蒸气)=Fe₃O₄+4H₂(加热)

C+H₂O=CO+H₂(高温)

2、水的还原性:水跟氟单质反应时,表现还原性,氧被还原成氧气

2F₂+2H₂O=4HF+O₂↑。

3、水的电离:

纯水有极微弱的导电能力,因为水有微弱的电离,存在着水的解离平衡。

H₂O←→H⁺+OH⁻

参考资料:

百度百科-水

如何把水分离成氢气和氧气

因为水分解成氢气和氧气条件比较苛刻,一般不容易达到,尤其是家庭小实验。

水在1000℃下可以分解成氢气和氧气。

水分解成氢氧气方法

一 .液态水升温成为气态水分子

液态水中水分子相互之间以氢键相联,缔合成为密集堆集体。挨个堆集的水分子相互间距离很小,光子不能辐射液体内部分子,不利于水分子吸收激光能量。液态水加热成为气态水分子时,分子之间距离增大约3倍,光子可通过分子之间空隙,使气体内部分子能够吸收光子,有利于水分子吸收激光能量,有利于反应物质中分子能量非平衡分布,能够产生激光化学反应。高温水气升高了反应物质分子能量状态,利于催化化学反应。

二 .“分解反应器”内激光化学反应及催化反应

1.分解反应器的特性

反应物质水气由通道进入储气室,温度、压力处于均衡分布态,储气室下方沿输入激光束方向的出口与反应室相通,激光光束从反应室两边输入,在反应室进口附近形成激光辐射区域,进口截面的宽度略小于激光束截面直径,反应物质气流受进口宽度约束通过激光辐射区域,所有水分子有机会吸收到激光能量。

2.输入反应室水气的热化学性质

进入反应室的水气温度650~750℃,压力18~25㎏f/㎝2,热焓1074.6 Kcal/㎏/K。水气进入反应室的流速约20~25米/秒,反应室出口的产出物质气流通过列阵喷管喉道口的速度约320米/秒。

3.水分子吸收光子过程

水分子的简正振动频率与光波频率匹配,即波的频率(波数/㎝-1)一致,水分子能够吸收光子。光子是电磁波,属于球面横波,存在电场矢量和磁场矢量的振动,由于光波中的电场和磁场都是矢量,所以光波是一种矢量波。

4.激光能量输入

激光能量从光反应室窗口输入,采用激光能量巨脉冲输入,光波频率是3756㎝-1~91425px-1(波长2.66~2.73/微米),激光以TEM oo输出或多模输出。

5.能量分布与化学反应

反应物质通过激光能量聚集的局部区域,被激励成为高能态分子,有利于激光化学反应和催化反应。因为化学反应的产生与反应速率的快慢,是以高能态分子的多少为判据的,即单位体积内高能态分子的多少决定成键分子的多少,成键分子的多少决定化学反应速率。激光能量聚集在局部区域与激光能量分布方法,产生的激光化学反应结果是不尽相同的。

水的分解是单物质反应,即只有一种物质参与的化学分解反应。

反应物质中分子的分解、成键、催化要达到能量阈值才能参与化学反应,化学反应的产生和化学反应速率的快慢,是以高能态分子的多少和分子相互碰撞的频率/秒决定的。化学分解反应中,分子的成键要满足对称性、能量相近、最大重叠三条原则。

6.红外激光化学反应

输入反应物质中的激光,光波频率3657~3756 cm-1属红外光源,因而反应物质中进行的是红外激光化学反应。光化学第一定律“只有吸收光子能量的分子才能参与光化学反应”。

7.催化化学反应

按照定义:“催化剂使化学反应速度加快,是本身不被消耗的物质”。化学反应中催化剂不消耗能量,也不增加能量,又是自身不被消耗的物质,是催化剂特有性质。“方法”实施例设计的“装置”,在分解反应器内的反应物质中,实施了化学吸附离解催化反应,能够减少外部输入反应物质中的激光能量。

三 .产出物质气流中的能量转换

“能量转换”是创新技术的核心,是实现产出物质能量大于反应物质输入能量的必备条件。

水分解化学反应中热能量转换成为激光能量,即产出物质的热能 激光能反应物质生成产出物质的热能激光能,构成热→光→热→光能量循环。热能转换成为激光能是以“气动激光器”理论为根据的。

四 .高温气流中分离氢氧分子

单物质水的化学反应是可逆反应,化学反应方向随气体热焓变化而改变。进入反应室水气因激光能量输入产生激光化学分解反应,气体温度接近1000℃,正在进行着的正方向化学分解反应,只要不改变环境和气体的热焓(温度),就不会产生逆方向化学化合反应。但是产出物质氢、氧分子气离开反应室必然降低温度,环境、温度的改变,必然产生逆方向化学化合反应生成水分子。因此,离开反应室的高温气流,产出物质中氢、氧分子必需分离,避免产生逆向化学化合反应。分开输出的氢气和氧气不会产生化合反应。

水如何分解变成氧气和氢气?

在往水H2O中加入二氧化硫SllO2和铝AL粉,并加入二氢化钙和过二氧化钙,就可以得到氢气和氧气。地质地理学知识来逃避地震灾害,火把测氧气,费压煮。