平面,是指面上任意两点的连线整个落在此面上,一种二维零曲率广延,这样一种面,它与同它相似的面的任何交线是一条直线。是由显示生活中的实物抽象出来的数学概念,但又与这些实物有根本的区别,既具有无限延展性,又没有大小、宽窄、薄厚之分,平面的这种性质与直线的无限延展性又是相通的。
平面平行判定方法如下:
一个平面内的两条相交直线平行于另一个平面,则这两平面平行;垂直于同一直线的两平面平行;一个平面内的两条相交直线与另一个平面内的两条相交直线平行,则这两个平面平行。平面与平面平行的判定定理的推论
必须是“两条相交直线”,且都“平行于另一个平面”推论:如果一个平面内的两条相交直线和另一个平面内的两条相交直线分别平行,那么这两个平面平行。
面面平行的另一判定定理:垂直于同一条直线的两个平面平行。\x0d直线a,b均在平面α内,且a∩b=A a∥β b∥β。
在同一平面内永不相交的两条直线,判定平行线的方法包括同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
扩展资料:
如果两条直线被第三条直线所截,一侧的同旁内角之和大于两个直角,那么最初的两条直线相交于这对同旁内角的另一侧。
如果两条直线都和第三条直线平行,那么这两条直线也互相平行。可以简称为:平行于同一条直线的两条直线互相平行。
在同一平面内,两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。也可以简单的说成:同位角相等两直线平行。
在同一平面内,两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。也可以简单的说成:内错角相等两直线平行。
在同一平面内,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。也可以简单的说成:同旁内角互补两直线平行。
参考资料来源:百度百科--平行线的判定
求两个平面平行的判定定理,越全面越好,
1、若平面a与平面b没有公共点,则平面a∥平面b.
2、若平面a的两相交直线都与平面b平行,则平面a∥平面b.
3、若平面a∥平面c、平面b∥平面c,则平面a∥平面b.
4、若平面a⊥直线L、平面b⊥直线L,则平面a∥平面b.
5、若平面a⊥平面c、平面b⊥平面c,则平面a∥平面b.
平面与平面平行的判定方法有哪些
一般用三个方法
如果两个平面垂直于同一条直线(或它们的垂线平行),那么这两个平面平行.
如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行.
如果一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行.
如何判定两个平面平行??
只要这条直线是在其中一个平面内,面面平行就可以直接得出线面平行。面面平行得情况下,其实中一个面上的任何一条直线都与另外一个面平行。
如果两个平面没有公共点,则称这两个平面平行。如果两个平面的垂线平行,那么这两个平面平行。如果一个平面内有两条相交直线与另一个平面平行,那么这两个平面也平行。
两个平行平面的垂线平行或重合。证明:重合的情况很容易证,平行的情况可以根据定理3先判定一条直线与两个平面都垂直,然后根据线面垂直的性质得到两条直线平行。
扩展资料:
面面平行相关的定理:
1、如果两个平面垂直于同一条直线,那么这两个平面平行。
2、如果一个平面内有两条相交直线与另一个平面平行,那么这两个平面平行。
3、如果一个平面内有两条相交直线分别与另一个平面内的两条相交直线平行,那么这两个平面平行。
4、两个平面平行,在一个平面内的任意一条直线平行于另外一个平面。
参考资料来源:百度百科-面面平行
面面平行的判定定理是什么?
1、如果两个平面垂直于同一条直线,那么这两个平面平行。
2、如果一个平面内有两条相交直线与另一个平面平行,那么这两个平面平行。
3、如果一个平面内有两条相交直线分别与另一个平面内的两条相交直线平行,那么这两个平面平行。
扩展资料:
经过平面外一点,有且只有一个平面与已知平面平行。
已知:P是平面α外一点
求证:过P有且只有一个平面β∥α
证明:
先证明存在性。在α内任意作两条相交直线a、b,过P分别作a'∥a,b‘∥b,则a’和b‘确定一个平面β。由判定定理3可知β∥α
再证明唯一性。假设过P有两个平面β1、β2都与α平行,则过P作l⊥α,根据性质定理3,l⊥β1且l⊥β2。
再根据判定定理1,β1∥β2,这就和β1和β2同时经过点P矛盾。
两个以上的情况证明类似,所以过P有且只有一个平面β∥α。