屏幕自发光是OLED技术。

OLED称为有机发光二极管,又称为有机电激光显示、有机发光半导体。由美籍华裔教授邓青云,于1979年在实验室中发现。OLED显示技术具有自发光、广视角、几乎无穷高的对比度、较低耗电、极高反应速度等优点,但是,作为高端显示屏,价格上也会比液晶电视要贵。 有机发光二极管依色彩可分为单色、多彩及全彩等种类,其中全彩有机发光二极管的制备最为困难,依驱动方式可分为被动式与主动式。

怎么理解OLED的自发光?

要理解OLED的自发光,就必须不得不提到LCD。LCD跟OLED是目前主流的两种显示技术,LCD依靠LED/CCFL背光源发光,而OLED则是主动发光。可以形象理解为OLED屏幕每个像素点都是一个小灯泡,而LCD则是百叶窗后面放几个大灯泡。LCD可以在几百上千个分区内进行控光,而OLED相当于拥有几百万、甚至上千万的像素级灯管,控光能力当然不是一个数量级。

自发光电视是个啥?

自发光电视就是OLED电视。OLED是能自发光的有机发光二极管,把它做成电视后,它就可以自己发光,不需要背光了。其实自发光是相对于液晶电视说的,液晶电视就不能自己发光,需要有背光才能工作。

OLED中的自发光技术是什么意思

清楚几个概念就可以了
1、LED:发光二极管Light Emitting Diode;应用分两大方面:单管应用(比如LED背光)和LED显示屏(比如很大公共场合看到的大型显示屏)。
2、LED LCD:这个是使用LED背光的液晶显示器,对比于早期LCD的,早期LCD采用CCFL灯管的背光,但是因为含汞,寿命短,成本高,现在基本已经不使用,基本都是LED为背光的,所以市场上很多液晶显示器大家都说LED LCD。
3、LED显示屏:就是由发光二极管排列组成的一显示器件,单颗LED进行封装,一个像素就是一个LED器件,象素尺寸多为12-26毫米,所以只能应用在大型、分辨率要求低的场合,因为LCD已经可以做到110寸以上了,所以这个也在逐渐被LCD替代。
4、OLED:Organic Light-Emitting Diode的缩写,有机发光二极管或有机发光显示器,属于区别于CRT,LCD,PDP的显示技术,OLED显示屏的像素尺寸可以做到几十到几百微米的精度,分PMOLED(应用在MP3,仪表等的小尺寸显示)和AMOLED(用在智能手机,Pad,笔记本,电视等),属于自发光,不需要背光。
LED显示屏和OLED都是自发光的,区别于LCD需要背光支持的被动发光。LED LCD中的LED只作为一个发光源(背光)。

AOD 息屏是什么?背后技术原理是什么?

熄屏显示功能,就是当手机处于锁定状态时,屏幕部分区域保持长亮而显示时间和通知等信息

手机在息屏状态下,屏幕上会显示当前时间、日期信息,无需点亮手机屏幕即可查看。息屏显示的原理主要是利用了OLED屏幕像素点自发光的特性,仅显示时间的像素点发光。

LCD屏幕本身是不会发光的,它需要搭载一个背光板把液晶面板照亮,才能显示颜色信息,这项技术如今已经非常成熟,成本也相对较低,显示效果也很不错。

OLED器件的发光:

处于阴极中的电子和阳极中的空穴在外加驱动电压的驱动下会向器件的发光层移动,在向器件发光层移动的过程中,若器件包含有电子注入层和空穴注入层;

则电子和空穴首先需要克服阴极与电子注入层及阳极与空穴注入层之间的能级势垒,然后经由电子注入层和空穴注入层向器件的电子传输层和空穴传输层移动;

电子注入层和空穴注入层可增大器件的效率和寿命,关于OLED器件电子注入的机制还在不断的研究当中,目前最常被使用的机制是穿隧效应和界面偶极机制。

OLED电视的屏幕自发声是基于什么原理?

OLED电视的屏幕自发声是利用了OLED“自发光元件结构+纤薄厚度”的结构特点,在OLED屏体背部增加了“激振器”(Exciters),OLED面板则起到震动板作用,声音从面板前方直接发出,可以实现与传统电视相比更具沉浸感的音质。

自发光屏幕的“新皇之争”—OLED与Micro/Mini LED分析-

在上期《硬件编年史—显示器常见背光种类盘点,蓝光最强的它竟然应用最广?》中,我们浅析了LCD(非自发光特性)屏幕的一些常见种类以及各个变种产品的优劣之处。而如今在个人消费市场中,随着高端智能手机的普及,OLED屏幕正在广泛地出现在人们的视野里,这种以高亮度、高对比度以及浓郁色彩显示效果著称的屏幕越发成为人们心中“好屏幕”的代名词。那么什么是OLED?这种屏幕的优缺点是什么?它是我们屏幕的最终材料形态吗?下面就来一起看看吧。

来自LGDisplay官网对OLED的介绍

OLED对比传统LCD屏幕的优劣

来自LGDisplay官网

做“薄”,做“弯”。由于OLED不需要大面积的背光层以及液晶层,故其在厚度上就较LCD有着天然优势,可以做到极薄的形态,这也是符合当下智能手机、智能穿戴设备、超级电视、显示器的需求。此外,由于OLED不一定需要“玻璃基板”作为底层、上层材料,故其可以变得弯折,近年来的折叠手机就是用的这项技术,用软性PI塑料作为基板来实现大角度地弯折。

“黑”得纯粹,相比于LCD使用的背光技术,在显示黑色时只能尽力遮盖相比,OLED如果显示黑色,即直接切断电压传输即可,让光子不再产生也就没有了一丝丝的光亮,让黑色更加纯粹。同时由于黑得纯粹,也让其对比度与LCD屏幕有了质的差距,OLED桌面显示器的对比度动辄10万比1,而LCD屏幕的桌面显示器往往平均也就只有1000比1。

来自LGDisplay官网

“色得妖艳”,OLED的有机材料在发光时往往可以发出很纯正的三原色光线来组合成不同的颜色,而LCD屏幕受制于背光技术和被动色彩显示,在色域方面是不如OLED来得那么丰富的。

来自LGDisplay官网

“亮得均匀”,由于LCD的显示时需要背光作为支撑的,而背光多数又是采用“侧入式”,因此在照射均匀性上比较一般。OLED在这方面要表现好得多,由于每个像素都能自己发光,在亮度均匀性上就很容易做到统一可控,让屏幕看起来更加的完整统一。

来自LGDisplay官网

“动作快”,区别与LCD屏幕的显示必备的液晶分子偏转需要时间,故在灰阶时间(响应时间)上,OLED这种用电压来控制像素点的方式要快上很多倍,理论上OLED屏幕是可以做到0.1ms级别的响应延迟,而LCD屏幕最快的电竞快速IPS屏幕的响应时间都要在5ms左右。

来自LGDisplay官网

那么难道说OLED就是无敌的吗?OLED一点缺点也没有吗?当然不是。

“烧屏”由于OLED的发色原理来自于有机物,就不得不考虑有机物损耗、寿命短的问题,同时因为同样面积大小的红绿蓝三色子像素的使用寿命并不相同,这就导致了一旦其中一种颜色(蓝色寿命最短)发生加速损耗,就会使得正常的显示内容发生严重色偏,甚至由损耗区域组成某种图形,这就是烧屏,这样也是为什么一些OLED手机、电视在长时间使用后会出现发黄现象的原因。

“同样分辨率下精细度低”,为了解决上述的烧屏问题,OLED厂家一般都会采用通过调整红绿蓝三个子像素的大小和位置以及数量来控制其寿命差不多相等。早期阶段OLED市场上会使用Pentile排列,而Pentile排列与标准RGB排列相比减少了三分之一的像素点,精细程度是同样分辨率LCD屏幕的2/3。虽然随着时代的发展,让OLED的子像素排列有了新的变化,比如说三星的钻石排列,华星光电的珍珠排列,这样排列都让OLED像素的密度和有所上升,但最高也不过83%左右,与标准的RGB垂直排列还是有一定差距的。

“高频闪”这几年PMW调光因为一些手机圈的新闻被大家所熟知,尤其是去年发布的新iPhone,因为其搭载了高频次的PMW调光技术而被许多用户吐槽说看久了眼睛受不了。那么PMW调光是什么呢?PMW调光是一种脉冲调光技术,原理比较繁琐,简单拿开灯来比喻,正常的调节台灯亮度为转动旋钮来调整电压、电阻的大小来实现(DC调光);而PMW调光则是通过在极短的时间内开关灯,利用人眼对于光的暂留现象来控制亮度。这一点是由于OLED屏幕在低亮度下屏幕显示不均匀所迫不得已采用的。

OLED发光原理

OLED(英文名:OrganicLight-EmittingDiode、中文直译:有机发光二极管)是一种有机材料发光技术,最早于1950年代由法国人研制,其后由美国柯达及英国剑桥大学加以演进,日本SONY及韩国三星和LG等公司于21世纪开始量产。

来自LGDisplay官网

OLED最典型的结构就是“类三明治”型,由一薄而透明具半导体特性之铟锡氧化物(ITO),与电力之正极相连,再加上另一个金属阴极组成,来构建成电洞传输层(HTL)、发光层(EL)与电子传输层(ETL)三个结构。当给到一定电压的时候,阳极与阴极的电子就会在发光层中相遇、结合,产生光子。发光层中带有特殊的有机材料(OLED中的O),来与光子一起变成红绿蓝三原色。

OLED基本结构:1.阴极( );2.发光层(EmissiveLayer,EL);3.阳极空穴与阴极电子在发光层中结合,产生光子;4.导电层(ConductiveLayer);5.阳极(+) 来自维基百科。

用一个通俗易懂的比喻来说,OLED的原理就好像给有机材料做“电刑”,阴极阳极一通电,有机材料就被“电得发光”。由于每个像素中的红绿蓝三原色点都可以被单独的电压所控制来发光,不需要大面积的背光作为屏幕的“亮源”,故这种技术也被称为自发光技术。

从OLED的发光原理上,我们就能看出,其相对于LCD技术来说,在原理层面就要简单很多。同时,OLED相比于传统的LCD屏幕来说还有着许多的优势。虽然有着些许缺点,但依然瑕不掩瑜。一块好屏幕的最重要的定义应该就是能够尽可能地还原出世界真实的色彩,而这一点上OLED肯定是能做得好的。但OLED就是最终的答案吗?各位可以看看以下两种技术。

来自LGDisplay官网

MiniLED和MicroLED

其中MiniLED技术我们在上一期就已经讲过,其原理就是将原本LED背光板改为由成数千个单独的LED灯珠组成,其中多个LED灯珠组成LED背光矩阵,每个背光矩阵都可以化成单独的控光区域。以一个市面上顶级的MiniLED电竞屏幕为例,其拥有4096个LED灯珠,每两个就可以组成一个控光区域,即拥有2048个单独的控光区域。

这样做的好处就是让MiniLED也拥有像OLED一样的超高对比度以及更精细化、可调的局部亮度,由于在显示黑色区域的时候,该区域内的灯珠是处于熄灭状态,所以理论上其对比度与OLED显示器是相等的,同时又没有OLED显示器长时间显示会烧屏的风险。MiniLED还有一个较大的优势就在于,其独立的区域灯珠可以在短时间内激发出较大的亮度,在一些优秀的MiniLED可实现局域2000尼特的最高亮度,常见的MiniLED也基本都能通过HDR1000的认证,这就让MiniLED对HDR内容非常友好,在HDR内容显示上优质的MiniLED可以与OLED所媲美。

但目前MiniLED还只是一个刚刚完善的屏幕种类,也摆脱不了LCD屏幕天生的可视角度差和色域窄的问题,如果想要解决色域窄的问题,就要在MiniLED显示器中再增加一层量子点膜(QLED技术),来拉高色域,但这样做又会让显示器的成本大大增加,得不偿失。目前高阶的MiniLED的显示器已经可以做到高阶OLED的水准,同时在成本控制上还有15%左右的优势。

得益于国内的屏厂对于MiniLED市场的进攻态度,在未来五年内,MiniLED背光技术将会逐渐成为中高端显示器的主流背光技术,而且其技术也将不断改进,灯珠数量得到提升,分区控制的技术也不断完善。

苹果去年发布的全新MacbookPro系列搭载MiniLED屏幕

而目前,虽然OLED已经占据了自发光屏幕的绝大部分市场,MiniLED蠢蠢欲动,但还有一个“新皇”已经被孕育出来,其带有的“王霸”之气已经让前两者感到威胁,它就是MicroLED。

MicroLED(英语:MicroLightEmittingDiodeDisplay,中文直译为发光二极管显示器)其显示原理,是将红绿蓝三原色的LED结构设计进行薄膜化、微小化、阵列化,让其尺寸仅在1~10微米等级左右;后将微米级别的LED批量式转移至电路基板上,再在每一个微米LED下安装电路和晶体管,就可以完成一个简单的MicroLED显示器。

MicroLED的每一个像素都含有可以自发光、独立控制的RGB三个LED子像素。以索尼在2012年推出的第一款MicroLED产品CrystalLED为例,该显示器拥有55英寸的面积,1920*1080的分辨率,它的微米LED的数量就为1920*1080*3=6220800颗。相比于高阶的MiniLED显示器区2万颗左右的灯珠,MicroLED的技术难度提升得不止一点半点。

来自三星Display官网对于MicroLED的介绍

由于MicroLED采用的是自发光的单独的微米级LED,所以其在色彩表现能力上是出类拔萃的,微米LED发光频谱其主波长的半高全宽FWHM仅约20nm,可提供极高的色饱和度,通常可大于120%NTSC。这与当下顶级的OLED显示器所能提供的色域几乎是一致的。同时由于LED无机物的稳定性,让色彩无论在使用多少时间后都可以保持一致性与稳定性,这一点是OLED所无法比拟的。同时MicroLED也兼顾显示纯黑色的特性,而且是像素级别的纯黑色,这一点要比MiniLED的分区背光控制要来得更加直接和纯粹。

来自三星Display官网对于MicroLED的介绍

而MicroLED能实现的另外一点就是省电和超高的亮度,在传统LCD电视中,显示效率约为3%,LCD中的TFT的损耗很小,因为它是电压驱动的。但是由于彩色滤光片、偏光片和LC材料中的能量损失,所以就导致LCD的效率很低。而MicroLED由于结构简单,能耗较小,拥有更高的光电转换效率,功率消耗量可低至LCD的10%、OLED的50%,在大幅度减少单位用电的同时还允许更高的能量用于直接发光,让最高亮度可以去到近2000尼特。

来自三星Display官网对于MicroLED的介绍

MicroLED几乎集合了OLED和LCD的所有优点,兼顾了高亮度、高色域、高对比度,又能做到长寿命、省电、柔性屏。可以说是未来屏幕的集大成者,那为什么MicroLED拥有这么多优点还没有普及呢?

可以说成也萧何败也萧何,MicroLED的优势就是来自于它多达百万级的微米LED,而难度也出现在这上面。目前,MicroLED主要有三个技术难点和问题,量子效率Droop效应(有效发光面有限、红光LED效率低)、驱动能力匹配问题(需要高电流、低功耗的驱动材料)、巨量转移问题(工艺要求高、精度要求高、成本高)。而最重要的问题就出现在巨量转移问题上。

巨量转移示意图

巨量移植技术是目前MicroLED的主流、理想制造技术,由于MicroLED是以微米级为单位的二极管,需要在硅晶圆上来制造,而非直接在屏幕基板上制造。所以这就需要让在硅晶圆上生产出来的微米LED移植到屏幕的基板上。这其中的转移技术就叫做巨量移植。由于待转移的微米LED晶片,大约为头发丝的1/10,需要精度很高的精细化操作;一次转移需要移动几万乃至几十万颗以上的LED,数量十分巨大,要求有极高的转移速率,这就让该技术的实现难度有了较高的挑战。

巨量转移示意图,来自eeNews

同时,制造海量的微米LED的成本也比较昂贵,以一块2K分辨率的MicroLED屏幕举例,其就需要1105万颗微米LED才能实现,在当前的制造难度下,其就决定了MicroLED的成本与售价肯定是不菲的。目前在民用领域中,MicroLED还没有正式的量产产品,上一个离我们比较近的产品是三星的TheWall商用屏幕,三星的TheWall电视采用了806.4 453.6mm的MicroLED面板模组构成,每个模组具有960 540分辨率,无边框设计,可完美拼接。每个模组都有250-2000nits亮度,约10,000:1的对比度,16bit颜色深度,高达100/120Hz刷新率。可以通过模组的拼接来自由组合屏幕大小,最高可以选装292英寸的产品。售价也超过了惊人的10万美金。

虽然,MicroLED在技术和成本、制造上仍然有着不小的难点,但也不阻止各大屏厂以及大品牌对它的渴望。世界最成功的 科技 品牌之一的苹果就在2020年开始布局MicroLED,苹果与台湾省LED生产商晶元光电和台湾省液晶面板制造商友达光电合作建造新工厂,该工厂将位于新竹科学园区龙潭分厂,苹果的总投资估计为新台币100亿美元(3.34亿美元)。苹果在一份公开报告中表示:“与OLED一样,Micro-LED也是自发光的。然而,与OLED相比,Micro-LED可以支持更高的亮度、更高的动态范围和更广的色域,同时实现更快的更新速率、更广的视角和更低的功耗,这些都是苹果青睐的品质。”

在MicroLED普及后,相信其一定会成为未来屏幕材质的首要选择,而且其模块化的组装方式,可以让屏幕根据用户的心意来进行定制,让屏幕也可以进入“DIY时代”。

来自三星Display官网对于MicroLED的介绍

总结:本期的《硬件编年史》,我们分析总结了目前自发光屏幕阵营(OLED、MiniLED、MIcroLED)三大产品线的实现技术与优缺点。目前的自发光屏幕做得比较成熟、市场接受度高的产品为OLED,但OLED并不会制霸自发光屏幕阵营榜首很久,因为MiniLED会在这几年实现弯道超车,待分区背光技术与控制芯片成熟后,其寿命长、无衰减、不烧屏的优势就会凸显出来。而Micro-LED则是未来20年屏幕发展的大趋势,模块化、微型化的产品形态,高亮、广色域、高对比、省电、反应快的特点都让它可以笑到最后。

苹果手机屏幕是自发光的吗?

不是。苹果采用了三星LED背光显示器和 LG IPS技术电容触屏,也就是说两者之间结合而成,互相利用。
有机发光二极管 (OLED)显示器越来越普遍,在手机、媒体播放器及小型入门级电视等产品中最为显著。不同于标准的液晶显示器,OLED 像素是由电流源所驱动。若要了解 OLED 电源供应如何及为何会影响显示器画质,必须先了解 OLED 显示器技术及电源供应需求。本文将说明最新的 OLED 显示器技术,并探讨主要的电源供应需求及解决方案,另外也介绍专为 OLED 电源供应需求而提出的创新性电源供应架构。
背板技术造就软性显示器  高分辨率彩色主动式矩阵有机发光二极管 (AMOLED) 显示器需要采用主动式矩阵背板,此背板使用主动式开关进行各像素的开关。液晶 (LC) 显示器非晶硅制程已臻成熟,可供应低成本的主动式矩阵背板,并且可用于 OLED。许多公司正针对软性显示器开发有机薄膜晶体管 (OTFT) 背板制程,此一制程也可用于 OLED 显示器,以实现全彩软性显示器的推出。不论是标准或软性 OLED,都需要运用相同的电源供应及驱动技术。若要了解 OLED 技术、功能及其与电源供应之间的互动,必须深入剖析这项技术本身。OLED 显示器是一种自体发光显示器技术,完全不需要任何背光。OLED 采用的材质属于化学结构适用的有机材质。  OLED 技术需要电流控制驱动方法  OLED 具有与标准发光二极管 (LED) 相当类似的电气特性,亮度均取决于 LED 电流。若要开启和关闭 OLED 并控制 OLED 电流,需要使用薄膜晶体管 (TFT)的控制电路。
进阶节能模式可达到最高效率和任何电池供电的设备一样,只有在转换器以整体负载电流范围的最高效率进行运作时,才能达到较长的电池待机时间,这对于 OLED 显示器尤其重要。OLED 显示器呈现全白时会耗用最大的电源,对于其它任何显示色彩则电流相对较小,这是因为只有白色需要所有红、绿、蓝子像素都全亮。举例来说,2.7 吋显示器需要 80mA 电流来呈现全白影像,但只需要 5mA 电流显示其它图标或图形。因此,OLED 电源供应需要针对所有负载电流达到高转换器效率。为了达到如此的效率,需要运用进阶的节能模式技术来减少负载电流,以降低转换器切换频率。由于这是透过电压控制震荡器 (VCO) 完成,因此能够将可能的 EMI 问题降至最低,并且能够将最低切换频率控制在一般 40kHz 的音讯范围以外,这可避免陶瓷输入或输出电容产生噪音。在手机应用中使用这类装置时,这特别重要,而且可简化设计流程。
按发光特性来说白光不是耗电最大,是以亮度值来决定耗电量的。如红,蓝,绿亮度值是10的一起亮时会产生30亮度值的白光。因此将红,蓝,绿亮度值调成3.3合成一个10的白光值(理论值)。从LED或OLED来说人眼看到同样的亮度,蓝光耗电最大。

n85自发光屏幕是什么意思??

这就是传说中的AMOLED屏啊
AMOLED (全称:Active Matrix/Organic Light Emitting Diode)
主动矩阵有机发光二极体面板(AMOLED)被称为下一代显示技术,包括三星电子、三星SDI、LG飞利浦都十分重视这项新的显示技术。
目前除了三星电子与LG飞利浦以发展大尺寸AMOLED产品为主要方向外,三星SDI、友达等都是以中小尺寸为发展方向。
日前夏普(Sharp)社长片山干雄被问到对OLED未来发展的看法,他说5年内不可能,个人认为他说的在TV市场可能是事实,但是在中小尺寸市场,AMOLED很有机会在2年内与TFT LCD并存,如果未来AMOLED的良率能够达到跟TFT LCD一样的水平,那取代TFT LCD绝对是指日可待。
因为AMOLED不管在画质、效能及成本上,先天表现都较TFT LCD优势很多。这也是许多国际大厂尽管良率难以突破,依然不放弃开发AMOLED的原因。目前还持续投入开发AMOLED的厂商,除了已经宣布产品上市时间的Sony,投资东芝松下Display(TMD)的东芝,以及另外又单独进行产品开发的松下,还有宣称不看好的夏普。2008年8月发布的NOKIA N85,以及2009年第一季度上市的NOKIA N86都采用了AMOLED。
在显示效能方面,AMOLED反应速度较快、对比度更高、视角也较广,这些是AMOLED天生就胜过TFT LCD的地方;另外AMOLED具自发光的特色,不需使用背光板,因此比TFT更能够做得轻薄,而且更省电;还有一个更重要的特点,不需使用背光板的AMOLED可以省下占TFT LCD 3~4成比重的背光模块成本。
AMOLED的确是很有魅力的产品,许多国际大厂都很喜欢,甚至是手机市场最热门的产品iPhone,都对AMOLED有兴趣,相信在良率提升之后,iPhone也会考虑采用AMOLED,尤其AMOLED在省电方面的特色,很适合手机,目前AMOLED面板耗电量大约仅有TFT LCD的6成,未来技术还有再下降的空间。
在了解了AMOLED与TFT LCD的主要性能差别后,我们通过技术层面来分析造成差别的主要原因在哪里。由于AMOLED是OLED技术的一种,我们以OLED的工作原理来进行分析。
OLED器件的结构示意图
OLED(OrganicLight-EmittingDisplay,有机发光显示器)是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。OLED发光原理是用ITO透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。辐射光可从ITO一侧观察到,金属电极膜同时也起了反射层的作用。
TN型液晶显示器工作原理
TFT液晶这边,我们以TN液晶面板工作原理为代表进行介绍。TN液晶组件结构为:向列型液晶夹在两片玻璃中间。这种玻璃的表面上先镀有一层透明而导电的薄膜(ITO)以作电极之用。在有ITO的玻璃上镀表面配向剂,以使液晶顺着一个特定且平行于玻璃表面之方向排列。利用电场可使液晶旋转的原理,在两电极上加上电压则会使得液晶偏振后方向转向与电场方向平行。 因为液态晶的折射率随液晶的方向而改变,其结果是光经过TN型液晶以后其偏振性会发生变化。可利用电的开关达到控制光的明暗。这样会形成透光时为白、不透光时为黑,字符就可以显示在屏幕上了。
很显然,两种面板的采用了不同的光源,OLED为自身发光而TN则采用了背光源,两者的成像机理是完全不一样的。通过对比不难发现,OLED具有更薄更轻、主动发光(不需要背光源)、无视角问题、高清晰、高亮度、响应快速、能耗低、使用温度范围广、抗震能力强、成本低和可实现柔软显示等特点,其中不少特性是TFT液晶面板难以实现的。
当然AMOLED最大的问题还是不良率,所以AMOLED面板的价格足足高出TFT LCD 50%,这对客户大量采用的意愿,绝对是一个门槛,而对奇晶而言,现阶段也还在调良率的练兵期,不敢轻易大量接单。

手机OLED屏幕与LCD屏幕有什么区别

区别:

1、在色域上面,OLED液晶屏可以显示无穷无尽个颜色,而且还不受背光灯的影响,像素在显示全黑画面的时候非常的有优势,LCD的液晶屏色域就目前来说在百分之72到百分之92之间,而led液晶屏的色域在百分之118以上。

2、在价格上面,同尺寸的LED液晶屏要比LCD液晶屏贵上1倍还多,OLE液晶屏则更贵。

3、在技术成熟方面,因为LCD液晶屏是一款传统的显示器,所以在技术的成熟方面要比OLED液晶屏、LED液晶屏好的多,例如显示反应速度,OLED液晶屏、LED液晶屏远远比不上LCD液晶显示屏。

4、在显示器的角度方面,OLED液晶屏要比LED液晶屏和LCD液晶屏好上很多,具体表现为LCD显示屏的可视角度非常的小,而LED液晶屏则在层次感和动态表现上面差强人意,另外LED液晶屏画面的纵深感也不够好。

扩展资料

OLED产品特性:

1、OLED显示技术具有自发光的特性,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光,而且OLED显示屏幕可视角度大,并且能够节省电能,从2003年开始这种显示设备在MP3播放器上得到了应用。

2、以OLED使用的有机发光材料来看,一是以染料及颜料为材料的小分子器件系统,另一则以共轭性高分子为材料的高分子器件系统。

3、同时由于有机电致发光器件具有发光二极管整流与发光的特性,因此小分子有机电致发光器件亦被称为OLED(Organic Light Emitting Diode),高分子有机电致发光器件则被称为PLED (Polymer Light-emitting Diode)。

小分子及高分子OLED在材料特性上可说是各有千秋,但以现有技术发展来看,如作为监视器的信赖性上,及电气特性、生产安定性上来看,小分子OLED处于领先地位。当前投入量产的OLED组件,全是使用小分子有机发光材料。

参考资料来源:百度百科:OLED