圆周率日,圆周率日是庆祝圆周率π的特别日子。正式日期是3月14日,由圆周率最常用的近似值3.14而来。下面小编给大家带来圆周率日是什么意思,希望大家能够喜欢。
圆周率日是什么意思
3月14日是圆周率日的正式日子,从圆周率常用的近似值3.14而来。美国麻省理工学院首先倡议将每年3月14日定为圆周率日,寓意3·14—圆周率的近似值。20__年,美国众议院正式通过这项提议。此后很多国家也接受3月14日为圆周率日。
圆周率日通常是在下午1时59分庆祝,有时甚至精确到26秒,以象征圆周率的8位近似值3.1415926。而一些认真的人则会选择凌晨1时59分庆祝,因为下午1时59分按24小时制应记作13时59分。
虽然这个节的“粉丝”数量不多,庆祝方式却五花八门。当天全球各地的一些大学数学系都要开派对,学生们七嘴八舌地讨论圆周率在人们日常生活中的意义,吃着各式各样的派,玩一种发音和“圆周率”英文单词相近的彩罐游戏,喝一种名字中含有“派”的鸡尾酒。美国麻省理工学院甚至常在这一天向学生发录取通知书。
世界上第一个将圆周率值计算到小数第7位的科学家,就是中国的数学家祖冲之。遗憾的是,我国大学纪念圆周率日的活动还不多。
“终极”圆周率日是1592年3月14日上午6时54分。这时间以美国式记法是3/14/1592 6:54,对应了圆周率的十位近似值3.141592654。
圆周率由来
很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率。1600年,英国威廉。奥托兰特首先使用π表示圆周率,因为π是希腊之“圆周”的第一个字母,而δ是“直径”的第一个字母,当δ=1时,圆周率为π。1706年英国的琼斯首先使用π。1737年欧拉在其著作中使用π。后来被数学家广泛接受,一直没用至今。
π是一个非常重要的常数。一位德国数学家评论道:“历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志。”古今中外很多数学家都孜孜不倦地寻求过π值的计算方法。
公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法。他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π
会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3.1416。公元200年间,我国数学家刘徽提供了求圆周率的科学方法-割圆术,体现了极限观点。刘徽与阿基米德的方法有所不同,他只取“内接”不取“外切”。利用圆面积不等式推出结果,起到了事半功倍的效果。而后,祖冲之在圆周率的计算上取得了世界领先地位,求得“约率”和“密率”(又称祖率)得到3.14159263.1415927。可惜,祖冲之的计算方法后来失传了。人们推测他用了刘徽的割圆术,但究竟用什么方法,还是一个谜。
15世纪,伊斯兰的数学家阿尔。卡西通过分别计算圆内接和外接正3 2边形周长,把π值推到小数点后16位,打破了祖冲之保持了上千年的记录。
1579年法国韦达发现了关系式,首次摆脱了几何学的陈旧方法,寻求到了π的解析表达式。
1650年瓦里斯把π表示成元穷乘积的形式
稍后,莱布尼茨发现接着,欧拉证明了这些公式的计算量都很大,尽管形式非常简单。π值的计算方法的最大突破是找到了它的反正切函数表达式。
1671年,苏格兰数学家格列哥里发现了
1706年,英国数学麦欣首先发现其计算速度远远超过方典算法。
1777年法国数学家蒲丰提出他的著名的投针问题。依靠它,可以用概率方法得到的过似值。假定在平面上画一组距离为的平行线,向此平面任意投一长度为的针,若投针次数为,针马平行线中任意一条相交的次数为,则有,很多人做过实验,1901年,有人投针3408次得出π3.1415926,如果取,则该式化简为1794年勒让德证明了π是无理数,即不可能用两个整数的比表示。
1882年,德国数学家林曼德证明了π是超越数,即不可能是一个整系数代数方程的根。
本世纪50年代以后,圆周率π的计算开始借助于电子计算机,从而出现了新的突破。目前有人宣称已经把π计算到了亿位甚至十亿位以上的有效数字。
人们试图从统计上获悉π的各位数字是否有某种规律。竞争还在继续,正如有人所说,数学家探索中的进程也像π这个数一样:永不循环,无止无休……
圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母π来表示。1706年,英国人琼斯首次创用π代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在π已成为圆周率的专用符号,π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。
圆周率日的发展过程
根据历史记载,目前为止最大型的以圆周率为主题的庆祝活动是在旧金山科学博物馆举办的,而该活动是旧金山科学博物馆一名物理学家组织。在当天,他带着博物馆的全体员工和各界人士一起参观博物馆纪念碑,同时一起分享关于圆周率的知识,而之后旧金山科学博物馆为了继承这一优良传统,于是将每年的这一天确定为圆周率日。美国麻省理工学院首次倡议,将3月14日定为国家性质的圆周率日,并于20__年通过决议。由于圆周率的定义简单,并且在数学公式之中是随处可见的表现,因此在如今流行文化之中的出现频率以及社会地位远远高于数学之中的其他常数。
在古代,实际上长期使用π=3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将π值改为(约为3.16)。直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算π值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法,算得π值为3.14。我国称这种方法为割圆术。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。
公元460年,南朝的祖冲之利用刘徽的割圆术,把π 值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7 和355/113 ,用分数来代替π ,极大地简化了计算,这种思想比西方也早一千多年。
祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把π 值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为“卢道夫数”。
圆周率前1000位是什么?
1,前100位
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
2,100位至200位
8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196
3,200位至300位
4428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273
4,300位至400位
7245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094
5,400位至500位
3305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912
6,500位至600位
9833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132
7,600位至700位
0005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235
8,700位至800位
4201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859
9,800位至900位
5024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303
10,900位至1000位
5982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989
扩展资料
圆周率日:
2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率。
国际圆周率日可以追溯至1988年3月14日,旧金山科学博物馆的物理学家Larry
Shaw,他组织博物馆的员工和参与者围绕博物馆纪念碑做3又1/7圈(22/7,π的近似值之一)的圆周运动,并一起吃水果派。之后,旧金山科学博物馆继承了这个传统,在每年的这一天都举办庆祝活动。
2009年,美国众议院正式通过一项无约束力决议,将每年的3月14日设定为“圆周率日”。决议认为,“鉴于数学和自然科学是教育当中有趣而不可或缺的一部分,而学习有关π的知识是一教孩子几何、吸引他们学习自然科学和数学的迷人方式……π约等于3.14,因此3月14日是纪念圆周率日最合适的日子。”
参考资料:-圆周率
π日是怎么来的?
最早有记录的π日庆祝活动,是1988年3月14日在美国旧金山科学探索馆一位物理学家 Larry Shaw 的倡议下,工作人员和游客们在探索馆的圆形空间内举行了庆祝活动(貌似就是围着那里转圈圈游行= =),并分享了一个水果派(有人知道是什么馅儿的吗…)。2009年3月11日,美国众议院通过了一项决议,把3月14日正式确定为全国的“π日”(National Pi Day)。同时,Geek密集出没的麻省理工学院(MIT)和普林斯顿大学,在π日的推广上的功劳也不可忽视——MIT每年都在“π日”发送入学通知书,后来甚至演变到每年都会在π日的τ时由电脑自动向幸运儿们发放准入证)。而普林斯顿大学则建立了一个萌爆了的 π日网站 ,发布他们的各类π日活动。满意请采纳
圆周率怎么算出来的
圆周率是用圆的周长除以它的直径计算出来的。“圆周率”即圆的周长与其直径之间的比率。1、圆周率是一个超越数,它不但是无理数,而且比无理数还要无理。无理数有一个特点,就是小数部分是无限的,而且是不循环的。比如0.9的循环小数,这个虽然无限,但是重复的。而圆周率则是无限,而且数字不会重复,因此圆周率看起来非常长的一串数字。
2、阿基米德是最早得出圆周率大约等于3.14的人。传说在他临死时被罗马士兵逼到一个海滩,还在海滩上计算圆周率,并且对士兵说:“你先不要杀我,我不能给后世留下一个不完善的几何问题。”阿基米德计算圆周率的方法是双侧逼近:使用圆的内接正多边形和外切正多边形的周长来近似圆的周长。正多边形的边数越多,多边形周长就越接近圆的边长。
3、以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率,多数是为了验证计算机的计算能力,还有,就是为了兴趣。
圆周率是什么
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示。
π也等于圆形之面积与半径平方之比,是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正实数x。
记号
π是第十六个希腊字母的小写。π这个符号,亦是希腊语περιφρεια(表示周边、地域、圆周等意思)的首字母。
1706年英国数学家威廉·琼斯(William Jones,1675—1749)最先使用“π”来表示圆周率。1736年,瑞士大数学家欧拉也开始用π表示圆周率。从此,π便成了圆周率的代名词。
要注意不可把π和其大写Π混用,后者是指连乘的意思。
圆周率是什么?
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。
π也等于圆形之面积与半径平方之比,是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正实数x。
圆周率用希腊字母π(读作pài)表示,是一个常数(约等于3.141592653),是代表圆周长和直径的比值;它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592653便足以应付一般计算;即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
扩展资料:
特性
把圆周率的数值算得这么精确,实际意义并不大;现代科技领域使用的圆周率值,有十几位已经足够了。
如果以39位精度的圆周率值,来计算可观测宇宙(observable universe)的大小,误差还不到一个原子的体积[1]。以前的人计算圆周率,是要探究圆周率是否循环小数。
自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了;π在许多数学领域都有非常重要的作用。
更多“圆周率日是什么意思,圆周率日的发展过程”的相关经验资讯请关注排行榜大全,我们将持续为您更新热门推荐!