数据预处理的方法:

1、墓于粗糙集( Rough Set)理论的约简方法,粗糙集理论是一种研究不精确、不确定性知识的数学工具。现在受到了KDD的广泛重视,利用粗糙集理论对数据进行处理是一种十分有效的精简数据维数的方法。

2、基于概念树的数据浓缩方法,在数据库中,许多属性都是可以进行数据归类,各属性值和概念依据抽象程度不同可以构成一个层次结构,概念的这种层次结构通常称为概念树。概念树一般由领域专家提供,它将各个层次的概念按一般到特殊的顺序排列。

3、信息论思想和普化知识发现,特征知识和分类知识是普化知识的两种主要形式,其算法基本上可以分为两类:数据立方方法和面向属性归纳方法。

4、基于统计分析的属性选取方法,可以采用统计分析中的一些算法来进行特征属性的选取,比如主成分分析、逐步回归分析、公共因素模型分析等。这些方法的共同特征是,用少量的特征元组去描述高维的原始知识基。

大数据预处理的方法有哪些?

1、数据清理


数据清理例程就是通过填写缺失值、光滑噪声数据、识别或者删除离群点,并且解决不一致性来进行“清理数据”。


2、数据集成


数据集成过程将来自多个数据源的数据集成到一起。


3、数据规约


数据规约是为了得到数据集的简化表示。数据规约包括维规约和数值规约。


4、数据变换


通过变换使用规范化、数据离散化和概念分层等方法,使得数据的挖掘可以在多个抽象层面上进行。数据变换操作是提升数据挖掘效果的附加预处理过程。

预处理常用的方法有哪些?

一、混凝-絮凝

混凝是指向水中投加一定剂量的化学药剂,这些化学药剂在水中发生水解,和水中的胶体粒子互相碰撞,发生电性中和,产生吸附、架桥和网捕作用,从而形成大的絮体颗粒,并从水中沉降,起到了降低颗粒悬浮物和胶体的作用。

二、介质过滤

介质过滤是指以石英砂或无烟煤等为介质,使水在重力或压力下通过由这些介质构成的床层,而水中的的颗粒污染物质则被介质阻截,从而达到与水分离的过程。粒状介质过滤基于“过滤-澄清”的工作过程去除水中的颗粒、悬浮物和胶体。



工业水处理

在工业用水处理中,预处理工序的任务是将工业用水的水源——地表水、地下水或城市自来水处理到符合后续水处理装置所允许的进水水质指标,从而保证水处理系统长期安全、稳定地运行,为工业生产提供优质用水。

预处理的对象主要是水中的悬浮物、胶体、微生物、有机物、游离性余氯和重金属等。这些杂质对于电渗析、离子交换、反渗透、钠滤等水处理装置会产生不利的影响。

我想问一下大数据的预处理的方法包括哪些

数据预处理(datapreprocessing)是指在主要的处理以前对数据进行的一些处理。如对大部分地球物理面积性观测数据在进行转换或增强处理之前,首先将不规则分布的测网经过插值转换为规则网的处理,以利于计算机的运算。另外,对于一些剖面测量数据,如地震资料预处理有垂直叠加、重排、加道头、编辑、重新取样、多路编辑等。数据预处理的方法:1、数据清理、数据清理例程通过填写缺失的值、光滑噪声数据、识别或删除离群点并解决不一致性来“清理”数据。主要是达到如下目标:格式标准化,异常数据清除,错误纠正,重复数据的清除。2、数据集成、数据集成例程将多个数据源中的数据结合起来并统一存储,建立数据仓库的过程实际上就是数据集成。3、数据变换、通过平滑聚集,数据概化,规范化等方式将数据转换成适用于数据挖掘的形式。4、数据归约、数据挖掘时往往数据量非常大,在少量数据上进行挖掘分析需要很长的时间,数据归约技术可以用来得到数据集的归约表示,它小得多,但仍然接近于保持原数据的完整性,并结果与归约前结果相同或几乎相同。

大数据处理之道(预处理方法)

大数据处理之道(预处理方法)
一:为什么要预处理数据?
(1)现实世界的数据是肮脏的(不完整,含噪声,不一致)
(2)没有高质量的数据,就没有高质量的挖掘结果(高质量的决策必须依赖于高质量的数据;数据仓库需要对高质量的数据进行一致地集成)
(3)原始数据中存在的问题:
不一致 —— 数据内含出现不一致情况
重复
不完整 —— 感兴趣的属性没有
含噪声 —— 数据中存在着错误、或异常(偏离期望值)的数据
高维度
二:数据预处理的方法
(1)数据清洗 —— 去噪声和无关数据
(2)数据集成 —— 将多个数据源中的数据结合起来存放在一个一致的数据存储中
(3)数据变换 —— 把原始数据转换成为适合数据挖掘的形式
(4)数据规约 —— 主要方法包括:数据立方体聚集,维度归约,数据压缩,数值归约,离散化和概念分层等。
(5)图说事实
三:数据选取参考原则
(1)尽可能富余属性名和属性值明确的含义
(2)统一多数据源的属性编码
(3)去除唯一属性
(4)去除重复属性
(5)去除可忽略字段
(6)合理选择关联字段
(7)进一步处理:
通过填补遗漏数据、消除异常数据、平滑噪声数据,以及纠正不一致数据,去掉数据中的噪音、填充空值、丢失值和处理不一致数据
四:用图说话,(我还是习惯用统计图说话)
结尾:计算机领域存在一条鄙视链的 ---- 学java的鄙视学C++的,有vim的鄙视用IDE的等等。
数据清洗的路子:刚拿到的数据 ----> 和数据提供者讨论咨询 -----> 数据分析(借助可视化工具)发现脏数据 ---->清洗脏数据(借助MATLAB或者Java/C++语言) ----->再次统计分析(Excel的data analysis不错的,最大小值,中位数,众数,平均值,方差等等,以及散点图) -----> 再次发现脏数据或者与实验无关的数据(去除) ----->最后实验分析 ----> 社会实例验证 ---->结束。

数据预处理的主要方法有哪些

1.墓于粗糙集( Rough Set)理论的约简方法
粗糙集理论是一种研究不精确、不确定性知识的数学工具。目前受到了KDD的广泛重视,利用粗糙集理论对数据进行处理是一种十分有效的精简数据维数的方法。我们所处理的数据一般存在信息的含糊性(Vagueness)问题。含糊性有三种:术语的模糊性,如高矮;数据的不确定性,如噪声引起的;知识自身的不确定性,如规则的前后件间的依赖关系并不是完全可靠的。在KDD中,对不确定数据和噪声干扰的处理是粗糙集方法的
2.基于概念树的数据浓缩方法
在数据库中,许多属性都是可以进行数据归类,各属性值和概念依据抽象程度不同可以构成一个层次结构,概念的这种层次结构通常称为概念树。概念树一般由领域专家提供,它将各个层次的概念按一般到特殊的顺序排列。
3.信息论思想和普化知识发现
特征知识和分类知识是普化知识的两种主要形式,其算法基本上可以分为两类:数据立方方法和面向属性归纳方法。
普通的基于面向属性归纳方法在归纳属性的选择上有一定的盲目性,在归纳过程中,当供选择的可归纳属性有多个时,通常是随机选取一个进行归纳。事实上,不同的属性归纳次序获得的结果知识可能是不同的,根据信息论最大墒的概念,应该选用一个信息丢失最小的归纳次序。
4.基于统计分析的属性选取方法
我们可以采用统计分析中的一些算法来进行特征属性的选取,比如主成分分析、逐步回归分析、公共因素模型分析等。这些方法的共同特征是,用少量的特征元组去描述高维的原始知识基。
5.遗传算法〔GA, Genetic Algo}thrn})
遗传算法是一种基于生物进化论和分子遗传学的全局随机搜索算法。遗传算法的基本思想是:将问题的可能解按某种形式进行编码,形成染色体。随机选取N个染色体构成初始种群。再根据预定的评价函数对每个染色体计算适应值。选择适应值高的染色体进行复制,通过遗传运算(选择、交叉、变异)来产生一群新的更适应环境的染色体,形成新的种群。这样一代一代不断繁殖进化,最后收敛到一个最适合环境的个体上,从而求得问题的最优解。遗传算法应用的关键是适应度函数的建立和染色体的描述。在实际应用中,通常将它和神经网络方法综合使用。通过遗传算法来搜寻出更重要的变量组合。

数据预处理

在数据挖掘中,海量的原始数据中存在大量不完整(有缺失值)、不一致、有异常的数据,会严重影响到数据挖掘建模的执行效果,甚至会导致挖掘结果的偏差,进而数据清洗就变得尤为重要。在数据清洗完成后接着甚至同时进行数据集成、变换、规约等一系列的处理,而整个过程称之为 数据预处理 。在整个数据挖掘过程中,数据预处理工作大致占据整个过程的 60%
一般来说,数据预处理的主要包括如下内容: 数据清洗、数据集成、数据变换、数据规约。
接下来的内容,我们也是从这几方面阐述。

常见的缺失值处理方法: 删除法、替换法、插补法等
(1)、删除法: 最简单的缺失值处理方法。从不同角度进行数据处理划分:

<code>
缺失值的处理
inputfile$date=as.numeric(inputfile$date)#将日期转换成数值型变量
sub=which(is.na(inputfile$sales))#识别缺失值所在行数
inputfile1=inputfile[-sub,]#将数据集分成完整数据和缺失数据两部分
inputfile2=inputfile[sub,]
行删除法处理缺失,结果转存
result1=inputfile1
</code>
(2)、替换法
一般根据属性将变量分:数值型和非数值型

在数据挖掘过程中,可能会存在数据分布在不同的数据源中,而这个时候需要将多个数据源合并存放在一个一致的数据存储(如数据仓库),整个过程称之为 数据集成

数据仓库:
关于数据仓库构思
漫谈数据仓库之维度建模
漫谈数据仓库之拉链表(原理、设计以及在Hive中的实现)

在R中,通过将存储在两个数据框中的数据以关键字为依据,以行为单位做列向合并,直接通过merge()函数完成。
merge(数据框1,数据框2,by="关键字"),而合并后的新数据自动按照关键字取值大小升序排列。不过在数据集成过程中存在表达形式不一样,导致不能直接完成匹配,就需要我们进行加以转换、提炼、集成等操作。具体从如下几方面:
(1)、实体识别
从不同数据源识别出现实世界的实体,来完成统一不同源的数据矛盾之处。

实体识别承担着检测和解决这些冲突的任务

(2)、冗余属性识别

数据变换主要对数据进行规范化处理、连续变量的离散化以及属性属性的构造,将数据转换成“适当的”形式,来满足挖掘任务及算法的需要。
(1)、简单函数变换
对原始数据进行某些数学函数变换,常见平方、开方、取对数、差分运算等等
主要来完成不具有正态分布变换服从正态分布;非平稳序列变为平稳序列等等
(2)、数据规范化
为了清除指标之间的量纲和取值范围差异的影响,需要进行标准化处理,将数据按照比例进行缩放,使之落入一个特定区域,便于进行综合分析。
常见方法如下:

<code>
读取数据
data=read.csv('./data/normalization_data.csv',he=F)
最小-最大规范化
b1=(data[,1]-min(data[,1]))/(max(data[,1])-min(data[,1]))
b2=(data[,2]-min(data[,2]))/(max(data[,2])-min(data[,2]))
b3=(data[,3]-min(data[,3]))/(max(data[,3])-min(data[,3]))
b4=(data[,4]-min(data[,4]))/(max(data[,4])-min(data[,4]))
data_scatter=cbind(b1,b2,b3,b4)
零-均值规范化
data_zscore=scale(data)
小数定标规范化
i1=ceiling(log(max(abs(data[,1])),10))#小数定标的指数
c1=data[,1]/10^i1
i2=ceiling(log(max(abs(data[,2])),10))
c2=data[,2]/10^i2
i3=ceiling(log(max(abs(data[,3])),10))
c3=data[,3]/10^i3
i4=ceiling(log(max(abs(data[,4])),10))
c4=data[,4]/10^i4
data_dot=cbind(c1,c2,c3,c4)
</code>

(3)、连续属性离散化
在数据的取值范围内设定若干个离散的划分点,将取值范围划分为不同的离散化的区间,最后使用不同的符号或数值代表落在不同区间的数据值。
常见离散方法:

(4)、属性构造
利用已有的属性构造出新的属性
(5)、小波变换(本次不进行阐述)

数据规约在大数据集上产生更小的且保持原数据完整性的新数据集,提升在数据集合上进行分析和挖掘的效率。
意义如下: